A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser
XIE Yi-Yang1,2, XU Chen1, KAN Qiang2, WANG Chun-Xia2, LIU Ying-Ming1, WANG Bao-Qiang1, CHEN Hong-Da2, SHEN Guang-Di1
1Beijing Photoelectronics Technology Laboratory, Beijing University of Technology, Beijing 1001242State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser
XIE Yi-Yang1,2, XU Chen1, KAN Qiang2, WANG Chun-Xia2, LIU Ying-Ming1, WANG Bao-Qiang1, CHEN Hong-Da2, SHEN Guang-Di1
1Beijing Photoelectronics Technology Laboratory, Beijing University of Technology, Beijing 1001242State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
摘要Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10° and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.
Abstract:Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10° and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.
[1] Iga K 2000 Quantum Electron. 6 1201 [2] Lear K L, Schneider R P, Choquette K D and Kilcoyne S P 1996 IEEE Photon. Technol. Lett. 8 740 [3] Oh T H, Huffaker D L and Deppe D G 1996 Appl. Phys. Lett. 69 3152 [4]Hegarty S P, Huyet G, McInerney J G, Choquette K D, Geib K M and Hou H Q 1998 Appl. Phys. Lett. 73 596 [5] Unold H J, Machmoud S W, Jaeger R, Golling M, Kicherer M, Mederer F, Riedl M C, Knoedl T, Miller M, Michalzik R and Ebeling K J 2002 Proc. SPIE 4649 218 [6] Unold H J,Mahmoud S W Z, Jager R, Grabherr M, Michalzik R and Ebeling K J 2001 IEEE J. Sel. Top. Quantum Electron. 7 386 [7]Haglund A,Gustavsson J S, Vukusic J, Modh P and Larsson A 2004 IEEE Photon. Technol. Lett. 16 368 [8] Wilson G C, Hadley M A, Smith J S and Lau K Y 1993 Appl. Phys. Lett. 63 3265 [9] Haglund A, Gustavsson J S, Vukusic J, Modh P and Larsson A 2004 IEEE Photon. Technol. Lett 16 2368 [10] Danner A J, Raftery J J, Yokouchi N and Choquette K D, 2004 Appl. Phys. Lett. 84 71031 [11]Leisher P. O., Chen C, Siriani D F, Sulkin J. D and Choquette K D 2007 Proc. SPIE 6864 68640L1 [12] Leisher P O, Danner A J and Choquette K D 2006 IEEE Photon. Technol. Lett. 1820 2156 [13]Song D S, Lee Y J, Choi H W and Lee Y H 2003 Appl. Phys. Lett. 82 193182 [14] Birks T A, Knight J C and Russell P St J 1997 Opt. Lett. 22 961 [15] Chen W, Li J Y, Li Sh Y, Li H Q, Jang Z W and Peng J G 2007 Chin. Opt. Lett. 57 383 [16] Ren L Y, Wang H Y, Zhang Y N, Yao B L and Zhao W 2007 Chin. Phys. Lett. 24 1298 [17]Noriyuki Y, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 91344 [18]Xu Y Zh, Ren X M, Zhang X and Huang Y Q 2006 Chin. Phys. Lett. 23 2759 [19]Noriyuki Y, Danner A J and Choquette K D 2003 IEEE J. Sel. Top. Quantum Electron. 9 51439 [20] Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K and Baba T 2004 Appl. Phys. Lett. 85 225161 [21]Lee K H, Baek J H, Hwang I K and Lee Y H 2004 Opt. Express 12 174136 [22]Song D S, Kim S H, Park H G, Kim C K and Lee Y H 2002 Appl. Phys. Lett. 80 3901 [23] Danner A J, Raftery J J, Leisher P O and Choquette K D 2006 Appl. Phys. Lett. 88 091114