Self-Assembly of TBrPP-Co Molecules on an Ag/Si(111) Surface Studied by Scanning Tunneling Microscopy
LI Qing1,2, Shiro Yamazaki2, Toyoaki Eguchi2, MA Xu-Cun1, JIA Jin-Feng1,3, XUE Qi-Kun1,3, Yukio Hasegawa2
1Institute of Physics, Chinese Academy of Science, Beijing 1001902The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa 277-8581, Japan3Department of Physics, Tsinghua University, Beijing 100084
Self-Assembly of TBrPP-Co Molecules on an Ag/Si(111) Surface Studied by Scanning Tunneling Microscopy
LI Qing1,2, Shiro Yamazaki2, Toyoaki Eguchi2, MA Xu-Cun1, JIA Jin-Feng1,3, XUE Qi-Kun1,3, Yukio Hasegawa2
1Institute of Physics, Chinese Academy of Science, Beijing 1001902The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa 277-8581, Japan3Department of Physics, Tsinghua University, Beijing 100084
摘要Self-assembly of TBrPP-Co molecules on a Si(111)-√3t×√3 Ag substrate is studied by low-temperature scanning tunneling microscopy. With the same adsorbed amount (0.07 ML), the molecules deposited by low-temperature evaporation show three kinds of ordered structures whereas those deposited by high-temperature evaporation have size-dependent ordered structures. The distinct differences in the self-assembly structures and in the electron density of states inside the molecule near the Fermi energy demonstrate that the Br atoms of the molecule desorb at the higher evaporation temperature.
Abstract:Self-assembly of TBrPP-Co molecules on a Si(111)-√3t×√3 Ag substrate is studied by low-temperature scanning tunneling microscopy. With the same adsorbed amount (0.07 ML), the molecules deposited by low-temperature evaporation show three kinds of ordered structures whereas those deposited by high-temperature evaporation have size-dependent ordered structures. The distinct differences in the self-assembly structures and in the electron density of states inside the molecule near the Fermi energy demonstrate that the Br atoms of the molecule desorb at the higher evaporation temperature.
[1] Forrest S R 1997 Chem. Rev. 97 1793 [2] Ke Y, Lindsay S, Chang Y, Liu Y and Yan H 2008 Science 319 180 [3] Baddeley C J 2003 Top. Catal. 25 17 [4] Lei S, Luis J P, Minoia A, Auweraer M V D, Rovira C, Lazzaroni R, Amabilino D B and Feyter S D 2008 Chem. Commun. 6 703 [5] Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C and Besenbacher F 2002 Science 296 328 [6] Yanagi H, Mukai H, Ikuta K, Shibutani T, Kamikado T, Yokoyama S and Mashiko S 2002 Nano Lett. 2 601 [7] Barlow D E, Scudiero L and Hipps K W 2004 Langmuir 20 4413 [8] Ge S P, L\"{U C and Zhao R G 2006 Chin. Phys. Lett 23 1558 [9] Aizawa H, Tsukada M, Sato N and Hasegawa S 1999 Surf. Sci. 429 L509 [10] Hasegawa S 2000 J. Phys.: Condens. Matter 12 R463 [11] Nakajima Y, Takura S, Nagao T and Hasegawa S 1997 Phys. Rev. B 56 6782 [12] Iancu V, Deshpande A and Hla S W 2006 Nano Lett. 6 820 [13] Li Q, Yamazaki S, Eguchi T, Kim H, Kahng S J, Jia J F, Xue Q K and Hasegawa Y 2009 Phys. Rev. B 80 115431 [14] Ono M, Nishigata Y, Nishio T, Eguchi T and Hasegawa Y 2006 Phys. Rev. Lett. 96 016801 [15] Li Q, Yamazaki S, Eguchi T, Hasegawa Y, Kim H, Kahng S J, Jia J F and Xue Q K 2008 Nanotechnology 19 465707 [16] St\"{ohr M, Wahl M, Spillmann H, Gade L H and Jung T A 2007 Small 3 1336 [17] Spillmann H, Kiebele A, St\"{ohr M, Jung T A, Bonifazi D, Cheng F Y and Diederich F 2006 Adv. Mater. 18 275 [18] Macleod J M, Ivasenko O, Perepichka D F and Rosei F 2007 Nanotechnology 18 424031 [19] Kerr J A and Dickenson A F T 1976 Handbook of Chemistry and Physics (Cleveland, OH: CRC) p 57 [20] Grill L, Dyer M, Lafferentz L, Persson M, Peters M V and Hecht S 2007 Nat. Nanotechnol. 2 687 [21] Veld M I, Iavicoli P, Haq S, Amabilino D B and Raval R 2008 Chem. Commun. 13 1536 [22] Hla S W, Bartels L, Meyer G and Rieder K H 2000 Phys. Rev. Lett. 85 2777 [23] Lauhon L J and Ho W 2000 J. Phys. Chem. A 104 2463