摘要Motions of curves in n-dimensional (n ≥ 4) centro-affine geometries are studied. It is shown that the 1+1-dimensional KdV equations and their hierarchy satisfied by the curvatures of curves under inextensible motions arise from such motions.
Abstract:Motions of curves in n-dimensional (n ≥ 4) centro-affine geometries are studied. It is shown that the 1+1-dimensional KdV equations and their hierarchy satisfied by the curvatures of curves under inextensible motions arise from such motions.
[1] Hasimoto H 1972 J. Fluid Mech. 51 477 [2] Lamb G L 1977 J. Math. Phys. 18 1654 [3] Nakayama K, Segur H and Wadati M 1992 Phys. Rev. Lett. 69 2603 [4] Beffa G M 1999 Bull. Soc. Math. France 127 363 [5] Chou K S and Qu C Z 2002 Physica D 162 9 [6] Sanders J and Wang J P 2003 Moscow Math. J. 3 1369 [7] Goldstein R E and Petrich D M 1991 Phys. Rev. Lett. 67 3203 [8] Nakayama K 1998 J. Phys. Soc. Jpn. 67 3031 [9] Chou K S and Qu C Z 2001 J. Phys. Soc. Jpn. 70 1912 [10] Chou K S and Qu C Z 2003 J. Nonlin. Sci. 13 487 [11] Chou K S and Qu C Z 2002 Chaos, Solitons and Fractals 14 29 [12] Li Y Y and Qu C Z 2008 Chin. Phys. Lett. 25 1931 [13] Qu C Z and Li Y Y 2008 Commun. Theor. Phys. 50 841 [14] Yang K Q 1995 Chin. Phys. Lett. 12 65 [15] Dai Z D, Liu Z J and Li D L 2008 Chin. Phys. Lett. 25 1531