摘要The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.
Abstract:The optical absorption of amorphous silicon (α-Si) films is enhanced by silver (Ag) nanostructures deposited on the films. The reflection at the long wavelength side of localized plasmon polaritons (LPPs) resonance originated from Ag nanostructures is significantly decreased, i.e. the optical absorption is enhanced. The results show that the average reflection value of the amorphous silicon films in the wavelength range of 900-1200 nm could be decreased by 11.4%. Moreover, the reduction of the reflection is found to be mainly dependent on the size of the Ag nanostructures, which is related to the island sizes, i.e. the LPP's resonance peak position.
ZHOU Bing;LI Dong-Sheng;XIANG Lue-Lue;YANG De-Ren. Enhanced Optical Absorption of Amorphous Silicon Films by Ag Nanostructures[J]. 中国物理快报, 2010, 27(3): 37303-037303.
ZHOU Bing, LI Dong-Sheng, XIANG Lue-Lue, YANG De-Ren. Enhanced Optical Absorption of Amorphous Silicon Films by Ag Nanostructures. Chin. Phys. Lett., 2010, 27(3): 37303-037303.
[1] W\"{urfel P 2004 Physics of Solar Cells: From Principles to New Concepts (Berlin: Wiley) [2] Bruton T M 2002 Solar Energy Mater. Solar Cells 72 3 [3] Myong S Y, Sriprapha K et al 2008 Solar Energy Mater. Solar Cells 92 639 [4] Shah A V, Schade H, Vanecek M et al 2004 Prog. Photovoltaics. 12 113 [5] Fahr S, Rockstuhl C and Lederer F 2008 Appl. Phys. Lett. 92 171114 [6] Heine C, Morf R H and Gale M T 1996 J. Mod. Opt. 43 1371 [7] Bielawny A, \"{Upping J, Miclea P T, Wehrspohn R B et al 2008 Phys. Status Solidi A 205 2796 [8] Zeng L, Bermel P, Yi Y, Alamariu B A, Broderick K A, Liu J, Hong C, Duan X et al 2008 Appl. Phys. Lett. 93 221105 [9] Schaadt D M, Feng B and Yu E T 2005 Appl. Phys. Lett. 86 063106 [10] H\"{agglund C, Z\"{ach M, Petersson G and Kasemo B 2008 Appl. Phys. Lett. 92 053110 [11] Stuart H R and Hall D G 1996 Appl. Phys. Lett. 69 2327 [12] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105 [13] Catchpole K R and Polman A 2008 Appl. Phys. Lett. 93 191113 [14] Li J B, Cheng M T, Yang Z J and Hao Z H 2009 Chin. Phys. Lett. 26113202 [15] Yang J, Zhang J S, WU X F and Gong Q H 2009 Chin. Phys. Lett. 26 067802 [16] Zhou L, Yu X F, Fu X F, Hao Z H and Li K Y 2008 Chin. Phys. Lett. 25 1776 [17] Brongersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (Berlin: Springer) [18] Royer P, Goudonnet J P, Warmack R J and Ferrel T L 1987 Phys. Rev. B 35 3753 [19] Smith J E, Jr, Brodsky M H, Crowder B L and Nathan M I 1971 Phys. Rev. Lett. 26 642 [20] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley-Interscience) [21] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters, Springer Series in Materials Science (Berlin: Springer) [22] Soller B J, Stuart H R and Hall D G 2001 Opt. Lett. 26 1421 [23] Catchpole K R and Polman A 2008 Opt. Express 16 21793 [24] Westcott S L, Jackson J B, Radloff C and Halas N J 2002 Phys. Rev. B 66 155431