Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators
DONG Ping1,3, ZHANG Gang2, CAO Zhuo-Liang1
1Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061 2Department of Mathematics and Physics, West Anhui University, Lu'an 237012 3Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), Anhui University, Hefei 230039
Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators
DONG Ping1,3, ZHANG Gang2, CAO Zhuo-Liang1
1Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061 2Department of Mathematics and Physics, West Anhui University, Lu'an 237012 3Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), Anhui University, Hefei 230039
摘要An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
Abstract:An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [2] Bennett C H and DiVincenzo D P 2000 Nature 404 247 [3] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [4] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [5] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [6] Pan J W, Simon C, Brukner \v{C and Zeilinger A 2001 Nature 410 1067 [7] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417 [8] Alber G, Delgado A, Gisin N and Jex I 2001 J. Phys. A 34 8821 [9] Bombin H and Martin-Delgado M A 2005 Phys. Rev. A 72 032313 [10] Yang M, Song W and Cao Z L 2005 Phys. Rev. A 71 012308 [11] D\"{ur W, Aschauer H and Briegel H J 2003 Phys. Rev. Lett. 91 107903 [12] Aschauer H, D\"{ur W and Briegel H J 2005 Phys. Rev. A 71 012319 [13] Kay A, Pachos J K, D\"{ur W and Briegel H J 2006 New J. Phys. 8 147 [14] Goyal K, McCauley A and Raussendorf R 2006 Phys. Rev. A 74 032318 [15] Kruszynska C, Miyake A, Briegel H J and D\"{ur W 2006 Phys. Rev. A 74 052316 [16] Yang M, Delgadoa A, Roaa L and Saavedraa C 2009 Opt. Commun. 282 1482 [17] Yang M, Yan F and Cao Z L quant-ph/0904.2343 [18] Song X G and Feng X L 2005 Chin. Phys. Lett. 22 15 [19] Zheng Y Z, Ye P and Guo G C 2004 Chin. Phys. Lett. 21 9 [20] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [21] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204 [22] Liu Y X, Miranowicz A, Koashi M and Imoto N 2002 Phys. Rev. A 66 062309 [23] Liu Y X, demir S K, Koashi M and Imoto N 2002 Phys. Rev. A 65 042326 [24] Yuan C H, Zhu K D and Yuan X Z 2007 Phys. Rev. A 75 062309 [25] Dong P and Cao Z L 2007 J. Phys.: Condens. Matter 19 376216 [26] Dong P and Cao Z L 2009 Phys. Lett. A 373 1527 [27] Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302(R) [28] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501 [29] Zheng S B 2002 Phys. Rev. A 66 060303(R) [30] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502 [31] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303 [32] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S and Schoelkopf R J 2004 Nature (London) 431 162 [33] Khaetskii A V and Nazarov Y V 2000 Phys. Rev. B 61 12639 [34] Khaetskii A V and Nazarov Y V 2001 Phys. Rev. B 64 125316 [35] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886 [36] Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J and Schon G 2005 Phys. Rev. B 72 134519