摘要The transition temperature, the depletion of the condensate atoms and the collective excitations of a Bose-Einstein condensation (BEC) with two- and three-body interactions in an anharmonic trap at finite temperature are studied in detail. By using the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation, an extended self-consistent model describing BEC with both two- and three-body interactions in a distorted harmonic potential at finite temperature is obtained and solved numerically. The results show that the transition temperature, the condensed atom number and the collective excitations are modified dramatically by the atomic three-body interactions and the distortion of the harmonic trap.
Abstract:The transition temperature, the depletion of the condensate atoms and the collective excitations of a Bose-Einstein condensation (BEC) with two- and three-body interactions in an anharmonic trap at finite temperature are studied in detail. By using the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation, an extended self-consistent model describing BEC with both two- and three-body interactions in a distorted harmonic potential at finite temperature is obtained and solved numerically. The results show that the transition temperature, the condensed atom number and the collective excitations are modified dramatically by the atomic three-body interactions and the distortion of the harmonic trap.
LI Hao-Cai;CHEN Hai-Jun;XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. 中国物理快报, 2010, 27(3): 30304-030304.
LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature. Chin. Phys. Lett., 2010, 27(3): 30304-030304.
[1] Stringari S 1996 Phys. Rev. Lett. 77 2360 [2] Jin D S et al A 1996 Phys. Rev. Lett. 77 420 [3] Mewes M O et al 1996 Phys. Rev. Lett. 77 988 [4] Kocharovsky V V et al 2000 Phys. Rev. Lett. 23 8406 [5] Xiong H W et al 2003 Phys. Rev. A 67 055601 [6] Wang J H and Ma Y L 2009 Phys. Rev. A 79 033604 [7] Zhang W X, Xu Z and You L 2005 Phys. Rev. A 72 053627 [8] Hutchinson D A W et al 1997 Phys. Rev. Lett. 78 1842 [9] Griffin A 1996 Phys. Rev. B 53 9341 [10] Giorgini S et al 1996 Phys. Rev. A 54 R4633 [11] Search C P et al 2002 Phys. Rev. A 65 063616 [12] Bagnato V et al 1987 Phys. Rev. A 35 4354 [13] Gautam S and Angom D cond-mat/0710.4066 v1 [14] Dodd R J et al 1998 Phys. Rev. A 57 R32 [15] Pilati S et al 2008 Phys. Rev. Lett. 100 140405 [16] Zhang C W et al 2004 Phys. Rev. Lett. 93 074101 [17] Yang L et al 2009 Chin. Phy. Lett. 26 076701 [18] Zhang X F et al 2009 Phys. Rev. A 79 033630 [19] Wu Y et al 2001 Phys. Rev. Lett. 86 2200 [20] Bulgac A 2002 Phys. Rev. Lett. 89 050402 [21] Leanhardt A E et al 2002 Phys. Rev. Lett. 89 040401 [22] Zhang W P et al 2003 Phys. Rev. A 68 023605 [23] Akhmediev N et al 1999 Int. J. Mod. Phys. B 13 625 [24] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624 [25] Li G Q et al 2006 Phys. Rev. A 74 055601 [26] Zezyulin D A et al 2008 Phys. Rev. A 78 013606 [27] Giorgini S 2000 Phys. Rev. A 61 063615 [28] de Groot S R et al 1950 Proc. R. Soc. London A 203 266 [29] Bagnato V et al 1987 Phys. Rev. A 35 4354 [30] Anderson M H et al 1995 Science 269 198 [31] Dobson J F 1994 Phys. Rev. Lett. 73 2244