摘要Based on the Collins formula in a cylindrical coordinate system and the method of introducing a hard aperture function into a finite sum of complex Gaussian functions, an approximate three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens is derived. Numerical results show that a reasonable choice of the obliquity factor would result in a better focus beam with a higher central intensity at the return place than that without obliquity, whereas the previous conclusion based on geometry optics is that the highest central intensity could be obtained when there is no obliquity.
Abstract:Based on the Collins formula in a cylindrical coordinate system and the method of introducing a hard aperture function into a finite sum of complex Gaussian functions, an approximate three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens is derived. Numerical results show that a reasonable choice of the obliquity factor would result in a better focus beam with a higher central intensity at the return place than that without obliquity, whereas the previous conclusion based on geometry optics is that the highest central intensity could be obtained when there is no obliquity.
ZHAO Yan-Zhong;SUN Hua-Yan;YU Xia-Qiong;FAN Meng-Shan. Three-Dimensional Analytical Formula for Oblique and Off-Axis Gaussian Beams Propagating through a Cat-Eye Optical Lens[J]. 中国物理快报, 2010, 27(3): 34101-034101.
ZHAO Yan-Zhong, SUN Hua-Yan, YU Xia-Qiong, FAN Meng-Shan. Three-Dimensional Analytical Formula for Oblique and Off-Axis Gaussian Beams Propagating through a Cat-Eye Optical Lens. Chin. Phys. Lett., 2010, 27(3): 34101-034101.
[1] Lecocq C, Deshors G, Lado-Bordowsky O and Meyzonnette J L 2003 Proc. SPIE 5086 280 [2] Han Y, Wu J, Yang C P, He W G and Xu G G 2007 Proc. SPIE 6795 67952O [3] Zhao Y Z, Sun H Y, Song F H, Tang L M, Wu W W, Zhang X and Guo H C 2008 Acta Phys. Sin. 57 2284 (in Chinese) [4] Qing G B, Wang X K, Guo Y, Chen D Z and Zhang C Q 1995 Laser Technol. 19 244 (in Chinese) [5] Jiang H L, Zhao D M and Mei Z R 2006 Opt. Commun. 260 1 [6] Liu P S, L\"{u B D and Duan K L 2006 Opt. Laser Technol. 38 133 [7] Rao L Z and Pu J X 2007 Chin. Phys. Lett. 24 1252 [8] Ji X L and L\"{u B D 2003 Acta Phys. Sin. 52 2149 (in chinese) [9] Gao Y Q, Zhu B Q, Liu D Z and Lin Z Q 2009 J. Opt. Soc. Am. A 26 2139 [10] Rao L Z, Wang Z C and Zheng X X 2008 Chin. Phys. Lett. 25 3223 [11] Chen J, Kuang D F and Fang Z L 2009 Chin. Phys. Lett. 26 094210 [12] Zhou G Q 2009 Acta Phys. Sin. 58 6185 (in Chinese) [13] Ge D, Cai Y J and Lin Q 2005 Chin. Phys. 14 128 [14] Zhao C L, Wang L G, Lu X H and Wang Y Z 2006 Chin. Phys. Lett. 23 2411 [15] Du X Y and Zhao D M 2008 J. Opt. Soc. Am. A 25 773 [16] Du X Y and Zhao D M 2006 J. Opt. Soc. Am. A 23 1946 [17] Du X Y and Zhao D M 2007 J. Opt. Soc. Am. A 24 444 [18] Zhao Y Z, Sun H Y, Song F H and Dai D D 2009 Acta Opt. Sin. 29 2552 (in Chinese) [19] Gu J G, Zhao D M, Mao H D and Mei Z R 2005 Opt. Laser Technol. 37 173 [20] Du X Y, Zhao D M and Korotkova O 2008 Phys. Lett. A 372 4135 [21] Ji X L 2009 Chin. Phys. Lett. 26 124210 [22] Zhang E T, Ji X L and L\"{u B D 2009 Chin. Phys. B 18 571 [23] Hu L and Cai Y J 2006 Phys. Lett. A 360 394 [24] Cai Y and He S 2006 Appl. Phys. B 84 493 [25] Cai Y J and L\"{u X 2007 Opt. Commun. 274 1 [26] Chen B S, Chen Z Y and Pu J X 2008 Opt. Laser Technol. 40 820 [27] Du X and Zhao D 2007 Appl. Phys. B 88 267 [28] Duan K L, Li J F, Zhao W and Wang Y S 2008 Chin. Phys. Lett. 25 1287 [29] Chen B S and Pu J X 2009 Chin. Phys. B 18 1033 [30] Shu J H, Chen Z Y and Pu J X 2009 Chin. Phys. Lett. 26 024207 [31] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752