Bifurcation Analysis of the Full Velocity Difference Model
JIN Yan-Fei1, XU Meng2
1Department of Mechanics, Beijing Institute of Technology,Beijing 1000812School of Traffic and Transportation, Beijing Jiaotong University,Beijing 100044
Bifurcation Analysis of the Full Velocity Difference Model
JIN Yan-Fei1, XU Meng2
1Department of Mechanics, Beijing Institute of Technology,Beijing 1000812School of Traffic and Transportation, Beijing Jiaotong University,Beijing 100044
Bifurcation is investigated with the full velocity difference traffic model. Applying the Hopf theorem, an analytical Hopf bifurcation calculation is performed and the critical road length is determined for arbitrary numbers of vehicles. It is found that the Hopf bifurcation critical points locate on the boundary of the linear instability region. Crossing the boundary, the uniform traffic flow loses linear stability via Hopf bifurcation and the oscillations appear.
Bifurcation is investigated with the full velocity difference traffic model. Applying the Hopf theorem, an analytical Hopf bifurcation calculation is performed and the critical road length is determined for arbitrary numbers of vehicles. It is found that the Hopf bifurcation critical points locate on the boundary of the linear instability region. Crossing the boundary, the uniform traffic flow loses linear stability via Hopf bifurcation and the oscillations appear.
JIN Yan-Fei;XU Meng. Bifurcation Analysis of the Full Velocity Difference Model[J]. 中国物理快报, 2010, 27(4): 40501-040501.
JIN Yan-Fei, XU Meng. Bifurcation Analysis of the Full Velocity Difference Model. Chin. Phys. Lett., 2010, 27(4): 40501-040501.
[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199 [2] Kerner B S and Rehborn H 1995 Phys. Rev. E 53 R1297 [3] Helbing D 2001 Rev. Mod. Phys. 73 1067 [4] Nagatani T 2002 Rep. Prog. Phys. 65 1331 [5] Wu J J, Gao Z Y, Sun H J and Huang H J 2006 Europhys. Lett. 74 560 [6] Tang T Q, Huang H J, Xu X Y and Xue Y 2007 Chin. Phys. Lett. 24 1410 [7] Gao Z Y and Li K P 2005 Chin. Phys. Lett. 22 2711 [8] Xu M and Gao Z Y 2007 Chin. Phys. 16 1608 [9] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902 [10] Yang T, Cui Y D, Jin Y H and Cheng S D 2009 Chin. Phys. Lett. 26 120502 [11] Kerner B S 1999 Physics World 12 25 [12] Nagatani T 1999 Phys. Rev. E 60 6395 [13] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134 [14] Igarashi Y, Itoh K, Nakanishi K, Ogura K and Yokokawa K 2001 Phys. Rev. E 64 047102 [15] Gasser I, Sirito G and Werner B 2004 Physica D 197 222 [16] Orosz G, Wilson R E and Krauskopf B 2004 Phys. Rev. E 70 026207 [17] Orosz G, Krauskopf B and Wilson R E 2005 Physica D 211 277 [18] Orosz G and Stepan G 2006 Proc. R. Soc. A 462 2643 [19] Newell G F 1961 Oper. Res. 9 209 [20] Whitham B G 1990 Proc. R. Soc. A 428 49 [21] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035 [22] Helbing D and Tilch B 1998 Phys. Rev. E 58 133 [23] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101 [24] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (New York: Springer)