The low energy absorption cross section and the decay rate of the stationary Axisymmetric Einstein-Maxwell Dilaton Axion black hole for massless scalar particles is calculated analytically. It is shown that the partial absorption cross section increases as the rotating parameter a and the absolute value of the dilaton D decreases. It is also shown that the partial absorption cross section is not always positive due to superradiance factor ω-mΩ. However, the decay rate of this black hole is always positive.
The low energy absorption cross section and the decay rate of the stationary Axisymmetric Einstein-Maxwell Dilaton Axion black hole for massless scalar particles is calculated analytically. It is shown that the partial absorption cross section increases as the rotating parameter a and the absolute value of the dilaton D decreases. It is also shown that the partial absorption cross section is not always positive due to superradiance factor ω-mΩ. However, the decay rate of this black hole is always positive.
[1] Jing J L and Ding C K 2008 Chin. Phys. Lett. 25 858 [2] Yang J et al 2009 Chin. Phys. Lett. 26 120401 [3] Futterman J A H, Handler F A et al 1988 Scattering from Black Holes (Cambridge: Cambridge University) [4] Starobinsky A A et al 1974 Sov. Phys. JETP 38 1 [5] Gibbons G W 1975 Commun. Math. Phys. 44 245 [6] Unruh W G 1976 Phys. Rev. D 14 3251 [7] Page D N 1976 Phys. Rev. D 13 198 [8] Sánchez N 1977 Phys. Rev. D 16 937 Sánchez N 1978 Phys. Rev. D 18 {1030} Sánchez N 1978 Phys. Rev. D 18 {1798} [9] Das S et al 1978 Phys. Rev. Lett. 78 417 [10] Jung E et al 2005 Nucl. Phys. B 717 272 Jung E et al 2004 Phys. Lett. B 586 {390} Jung E, Kim S H et al 2005 Phys. Lett. B 614 {78} [11] Emparan R 1988 Nucl. Phys. B 516 297 [12] Park D K et al 2000 Phys. Lett. B 492 135 [13] Cvetic M, Lü H et al 1999 Phys. Lett. B 462 62 [14] Liu C Q and Jing J L 2007 Commun. Theor. Phys (Beijing,China) 47 665 Liu C Q and Jing J L 2007 Commun. Theor. Phys (Beijing,China) 48 {1051} [15] Garcia A et al 1995 Phys. Rev. Lett. 74 1276 [16] Jing J L and Wang S L 2002 Phys. Rev. D 65 064001 [17] Abranmowitz M and stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) [18] Flammer C 1957 Spheroidal Wave Functions (Stanford CA: Stanford University) [19] Press W H and Teukolsky S A 1973 Astrophys. J. 185 649 [20] Mino Y, Sasaki M et al 1997 Theor. Phys. Suppl. 128 373 [21] Starobinsky A A 1973 Sov. Phys. JETP 37 28 }