On the basis of quantum hydrodynamical equations we derive a unitarity Schrödinger equation of a finite trapped superfluid Fermi gas valid in the whole interaction regime from BCS superfluid to BEC. This equation is just the Ginzburg-Laudau-type equation for the fermionic Cooper pairs in the BCS side, the Gross-Pitaevskii-type equation for the bosonic dimers in the BEC side, and a unitarity equation for a strongly interacting Fermi superfluid in the unitarity limit. By taking a modified Gauss-like trial wave function, we solve the unitarity Schrödinger equation, calculate the energy, chemical potential, sizes and profiles of the ground-state condensate, and discuss the properties of the ground state in the entire BCS-BEC crossover regimes.
On the basis of quantum hydrodynamical equations we derive a unitarity Schrödinger equation of a finite trapped superfluid Fermi gas valid in the whole interaction regime from BCS superfluid to BEC. This equation is just the Ginzburg-Laudau-type equation for the fermionic Cooper pairs in the BCS side, the Gross-Pitaevskii-type equation for the bosonic dimers in the BEC side, and a unitarity equation for a strongly interacting Fermi superfluid in the unitarity limit. By taking a modified Gauss-like trial wave function, we solve the unitarity Schrödinger equation, calculate the energy, chemical potential, sizes and profiles of the ground-state condensate, and discuss the properties of the ground state in the entire BCS-BEC crossover regimes.
ZHANG Wen-Yuan;WANG Cheng-Tao;MA Yong-Li. Unitarity Schrödinger Equation and Ground State Properties of the Finite Trapped Superfluid Fermi Gases in a BCS-BEC Crossover[J]. 中国物理快报, 2010, 27(4): 40304-040304.
ZHANG Wen-Yuan, WANG Cheng-Tao, MA Yong-Li. Unitarity Schrödinger Equation and Ground State Properties of the Finite Trapped Superfluid Fermi Gases in a BCS-BEC Crossover. Chin. Phys. Lett., 2010, 27(4): 40304-040304.
[1] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 Ketterle W and Zwierlein M W 2008 arXiv:{0801.2500}v1 [2] Partridge G B, Li W H, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503 Zwierlein M W, Schunck C H, Schirotzek A and Ketterle W 2006 Nature 442 {54} [3] Altmeyer A, Riedl S, Kohstall1 C, Wright M J, Geursen R, Bartenstein M, Chin C, Denschlag J H and Grimm R 2007 Phys. Rev. Lett. 98 040401 [4] Manini N and Salasnich L 2005 Phys. Rev. A 71 033625 [5] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2004 Phys. Rev. Lett. 93 200404 [6] Zhou L, Ma C R and Ma Y L 2007 J. Phys. B 40 4591 [7] Hu H, Liu X J and Drummond P D 2006 Europhys. Lett. 74 574 [8] Adhikari S K 2008 Phys. Rev. A 77 045602 [9] Zhang W Y, Zhou l, and Ma Y L 2009 EuroPhys. Lett. 88 40001 [10] Wang C T, Ma C R and Ma Y L 2009 J. Low Tem. Phys. 154 85 [11] Yin J, Ma Y L and Huang G 2006 Phys. Rev. A 74 013609 [12] Ma Y L and Huang G 2007 Phys. Rev. A 75 063629 [13] Zhou Y, Ma X D and Huang G 2006 Chin. Phys. Lett. 23 2662 [14] Cao S Q, Ma Y L and Huang G 2009 Phys. Rev. A 79 013620 [15] Adhikari S K and Salasnich L 2008 Phys. Rev. A 77 033618 [16] Baym G and Pethick C J 1996 Phys. Rev. Lett. 76 6 [17] Huang C C and Wu W C 2007 Phys. Rev. A 75 023609 [18] Dong H and Ma Y L 2009 Chin. Phys. B 18 080956 [19] Son D T and Wingate M 2006 Ann. Phys. 321 197 Rupak G and Schafer T 2009 Nucl. Phys. A 816 {52} [20] Salasnich L and Toigo F 2008 Phys. Rev. A 78 053626 [21] Salasnich L, Manini N and Toigo F 2008 Phys. Rev. A 77 043609 [22] Kim Y E and Zubarev A L 2004 Phys. Rev. A 70 033612 Kim Y E and Zubarev A L 2005 Phys. Rev. A 72{011603(R)} [23] Heiselberg H 2004 Phys. Rev. Lett. 93 040402 [24] Xu Z J et al 2006 Chin. Phys. Lett. 23 1391 [25] Kinast J, Turlapov A, Thomas J E, Chen Q, Stajic J, Levin K 2005 Science 307 1296