Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel
FAN Hong-Yi1,2; REN Gang1
1Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel
FAN Hong-Yi1,2; REN Gang1
1Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
摘要We show that passing through the amplitude dissipative channel the initial pure number state density operator is evolved into the density operator of binomial distribution (a mixed state), and the binomial distribution parameter is just equal to e-2kt,where κ is the dissipative parameter of the channel. We solve the corresponding master equation to obtain the operator-sum representation of the density operator by virtue of the entangled state representation, which seems to be a convenient approach.
Abstract:We show that passing through the amplitude dissipative channel the initial pure number state density operator is evolved into the density operator of binomial distribution (a mixed state), and the binomial distribution parameter is just equal to e-2kt,where κ is the dissipative parameter of the channel. We solve the corresponding master equation to obtain the operator-sum representation of the density operator by virtue of the entangled state representation, which seems to be a convenient approach.
FAN Hong-Yi;REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. 中国物理快报, 2010, 27(5): 50302-050302.
FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel. Chin. Phys. Lett., 2010, 27(5): 50302-050302.
[1] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer) [2] Preskill J 1998 Quantum Information and Computation, Lecture Notes for Physics (Berlin: Springer) vol 229 [3] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) [4] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242 Fan H Y and Fan Y 2001 Phys. Lett. A 282 269 [5] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571 [6] Fan H Y and Fan Y 2002 J. Phys. A 35 6873 [7] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical) (in Chinese) [8] Hu L Y and Fan H Y 2009 Chin. Phys. Lett. 26 060307 [9] Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513 [10] Kraus K 1983 States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics (Berlin: Springer) vol 190 [11] Stoler D et al 1985 Opt. Acta 32 345 [12] Fan H Y and Jing S C 1995 Commum. Theor. Phys. 24 125