摘要Gallium Nitride (GaN) room temperature α particle detectors are fabricated and characterized, whose device structure is Schottky diode. The current-voltage (I-V) measurements reveal that the reverse breakdown voltage of the detectors is more than 200 V owing to the consummate fabrication processes, and that the Schottky barrier and ideal factor of the detectors are 0.64 eV and 1.02, respectively, calculated from the thermionic transmission model. 241Am α particles pulse height spectra from the GaN detectors biased at -8 V is obviously one Gauss peak located at channel 44 with the full width at half maximum (FWHM) of 15.87 in channel. One of the main reasons for the relatively wider FWHM is that the air between the detectors and isotope could widen the spectrum.
Abstract:Gallium Nitride (GaN) room temperature α particle detectors are fabricated and characterized, whose device structure is Schottky diode. The current-voltage (I-V) measurements reveal that the reverse breakdown voltage of the detectors is more than 200 V owing to the consummate fabrication processes, and that the Schottky barrier and ideal factor of the detectors are 0.64 eV and 1.02, respectively, calculated from the thermionic transmission model. 241Am α particles pulse height spectra from the GaN detectors biased at -8 V is obviously one Gauss peak located at channel 44 with the full width at half maximum (FWHM) of 15.87 in channel. One of the main reasons for the relatively wider FWHM is that the air between the detectors and isotope could widen the spectrum.
[1] Shchekin O B, Epler J E, Trottier T A, Margalith T et al 2006 Appl. Phys. Lett. 89 071109 [2] Nakamura S, Senoh M and Nagahama S I 1997 Jpn. J. Appl. Phys. 36 L1568 [3] Mazzeo G, Conte G, Reverchon J L et al 2006 Appl. Phys. Lett. 89 223513 [4] Zhao L B, Wu J J, Xu K et al 2008 Chin. Phys. Lett. 25 4342 [5] Sang L W, Qin Z X, Fang H et al 2009 Chin. Phys. Lett. 26 117801 [6] Yang L, Hao Y, Ma X H et al 2009 Chin. Phys. Lett. 26 117104 [7] Molla M, Adeyb J, Ajilic A A et al 2005 Nucl. Instrum. Methods Phys. Res. A 546 99 [8] Grant J, Batesa R, Cunningham W et al 2007 Nucl. Instrum. Methods Phys. Res. A 576 60 [9] Duboz J Y, Laügt M, Schenk D et al 2008 Appl. Phys. Lett. 92 263501 [10] Vaitkus J, Cunningham W, Gaubas E et al 2003 Nucl. Instrum. Methods Phys. Res. A 509 60 [11] Sellin P J, Hoxley D, Lohstroh A et al 2004 Nucl. Instrum. Methods Phys. Res. A 531 82 [12] Jhou Y D, Chang S J, Su Y K et al 2007 Appl. Phys. Lett. 91 103506 [13] Jhou Y D, Chen C H, Chang S J, Su Y K et al 2006 Microelectron. J. 37 328
[1]
. [J]. 中国物理快报, 2019, 36(11): 110701-.
[2]
. [J]. 中国物理快报, 2014, 31(05): 52901-052901.
[3]
. [J]. 中国物理快报, 2014, 31(1): 12901-012901.
[4]
ZHANG Ning-Tao**,LEI Xiang-Guo,ZHANG Yu-Hu,ZHOU Xiao-Hong,LIU Min-Liang,GUO Ying-Xiang,FANG Yong-De,LI Shi-Cheng,ZHOU Hou-Bing,DING Bing,WANG Hai-Xia,WU Xiao-Guang,HE Chuang-Ye,ZHENG Yun. Measured and Simulated Performance of a Four-Segmented Clover Detector[J]. 中国物理快报, 2012, 29(4): 42901-042901.