DAN Lin1,2,4, YAN Hui1,2,3, WANG Jin1,2, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 4Graduate School of Chinese Academy of Sciences, Beijing 100049
Chip-Based Square Wave Dynamic Micro Atom Trap
DAN Lin1,2,4, YAN Hui1,2,3, WANG Jin1,2, ZHAN Ming-Sheng1,2
1State Key Laboratory of Magnetic and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 4Graduate School of Chinese Academy of Sciences, Beijing 100049
摘要We propose a scheme for a chip-based dynamic micro atom trap where the trap potentials are created by square wave radiation and an inhomogeneous static magnetic field. The parameters of this kind of trap array can be modulated dynamically. Both one-dimensional (1-D) and two-dimensional (2-D) trap array potentials for 6Li atoms are discussed. The 1-D trap is combined by a square wave radiation (6 kHz) and a gradient magnetic field (300 G/cm), the array constant of 1-D trap is 0.85 μm. Since the trap array does not require any laser field, it can be easily integrated on a chip and it is useful in applications of scalable quantum information processing.
Abstract:We propose a scheme for a chip-based dynamic micro atom trap where the trap potentials are created by square wave radiation and an inhomogeneous static magnetic field. The parameters of this kind of trap array can be modulated dynamically. Both one-dimensional (1-D) and two-dimensional (2-D) trap array potentials for 6Li atoms are discussed. The 1-D trap is combined by a square wave radiation (6 kHz) and a gradient magnetic field (300 G/cm), the array constant of 1-D trap is 0.85 μm. Since the trap array does not require any laser field, it can be easily integrated on a chip and it is useful in applications of scalable quantum information processing.
[1] Fortagh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235 [2] Folman R, Kruger P, Schmiedmayer J, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263 [3] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kruger P 2005 Nature Phys. 1 57 [4] Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2007 Phys. Rev. Lett. 98 0300407 [5] Hofferberth S, Lesanovsky I, Fischer B, Verdu J and Schmiedmayer J 2006 Nature Phys. 2 710 [6] Lesanovsky I and von Klitzing W 2007 Phys. Rev. Lett. 99 083001 [7] Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Kruger P and Schmiedmayer J 2006 Phys. Rev. A 73 033619 [8] Trebbia J B, Alzar C L G, Cornelussen R, Westbrook C I and Bouchoule I 2007 Phys. Rev. Lett. 98 263201 [9] Courteille P W, Deh B, Fortagh J, Gunther A, Kraft S, Marzok C, Slama S and Zimmermann C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1055 [10] Cirone M A, Negretti A, Calarco T, Kruger P and Schmiedmayer J 2005 Eur. Phys. J. D 35 165 [11] Treutlein P, Hansch T W, Reichel J, Negretti A, Cirone M A and Calarco T 2006 Phys. Rev. A 74 022312 [12] Charron E, Cirone M A, Negretti A, Schmiedmayer J and Calarco T 2006 Phys. Rev. A 74 012308 [13] Yan H, Yang G Q, Shi T, Wang J and Zhan M S 2008 Phys. Rev. A 78 034304 [14] Shi T, Yan H, Yang G Q, Wang J and Zhan M S 2009 Acta Phys. Sin. 58 1586 (in Chinese) [15] Ketterle W and VanDruten N J 1996 Adv. At. Mol. Opt. Phys. 37 181 [16] Yang X H, Zhang J, Zhang H F and Yan X N 2009 Chin. Phys. Lett. 26 073202 [17] Zhou X J, Chen X Z, Chen J B, Wang Y Q and Li J M 2009 Chin. Phys. Lett. 26 090601 [18] Rubbmark J R, Kash M M, Littman M G and Kleppner D 1981 Phys. Rev. A 23 3107 [19] Gunther A, Kraft S, Zimmermann C and Fortagh J 2007 Phys. Rev. Lett. 98 140403 [20] Andersson E, Calarco T, Folman R, Andersson M, Hessmo B and Schmiedmayer J 2002 Phys. Rev. Lett. 88 100401 [21] Timp G, Behringer R E, Tennant D M, Cunningham J E, Prentiss M and Berggren K K 1992 Phys. Rev. Lett. 69 1636 [22] Mcclelland J J, Scholten R E, Palm E C and Celotta R J 1993 Science 262 877 [23] Yan H, Yang G Q, Shi T, Wang J and Zhan M S 2010 Chin. Phys. B 19 023204 [24] Crookston M B, Baker P M and Robinson M P 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3289 [25] Fernholz T, Gerritsma R, Kruger P and Spreeuw R J C 2007 Phys. Rev. A 75 063406 [26] Zhang H C, Zhang P F, Xu X P, Han J R and Wang Y Z 2005 Chin. Phys. Lett. 22 83 [27] Spreeuw R J C, Gerz C, Goldner L S, Phillips W D, Rolston S L, Westbrook C I, Reynolds M W and Silvera I F 1994 Phys. Rev. Lett. 72 3162 [28] Desruelle B, Boyer V, Bouyer P, Birkl G, Lecrivain M, Alves F, Westbrook C I and Aspect A 1998 Eur. Phys. J. D 1 255