摘要We construct various cases for validity of the generalized second law (GSL) of thermodynamics by assuming the logarithmic correction to the horizon entropy of an evolving wormhole. It is shown that the GSL is always respected for α0 ≤0, whereas for α0>0 the GSL is respected only if πr2A+/ℏ<α.
Abstract:We construct various cases for validity of the generalized second law (GSL) of thermodynamics by assuming the logarithmic correction to the horizon entropy of an evolving wormhole. It is shown that the GSL is always respected for α0 ≤0, whereas for α0>0 the GSL is respected only if πr2A+/ℏ<α.
Faiz-ur-Rahman;Salahuddin;M. Akbar**
. Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. 中国物理快报, 2011, 28(7): 70403-070403.
Faiz-ur-Rahman, Salahuddin, M. Akbar**
. Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction. Chin. Phys. Lett., 2011, 28(7): 70403-070403.
[1] Morris M S and Thorne K S 1988 Am. J. Phys. 56 395
[2] Bochicchio I and Faraoni V 2010 Phys. Rev. D 82 044040
Dzhunushaliev V, Folomeev V, Myrzakulov R and Singleton D 2010 Phys. Rev. D 82 045032
Carr B, Tomohiro Harada J and Hideki Maeda 2010 Class. Quant. Grav. 27 183101
[3] Bardeen J M et al 1973 Commun. Math. Phys. 31 161
Akbar M 2007 Chin. Phys. Lett. 24 1158
Akbar M and Cai R G 2007 Phys. Lett. B 648 243
Akbar M and Cai R G 2007 Phys. Rev. D 75 084003
Akbar M and Cai R G 2006 Phys. Lett. B 635 7
Cai R G and Ohta N 2010 Phys. Rev. D 81 084061
Cai R G and Li-Ming Cao 2009 Phys. Lett. B 679 504
Padmanabhan T 2010 Rept. Prog. Phys. 73 046901
Dawood Kothawala, D and Padmanabhan T 2009 Phys. Rev. D 79 104020
[4] Hawking S W 1975 Commun. Math. Phys. 43 199
[5] Bekenstein J D and Nuovo 1972 Lett. Nuovo Cimento 4 737
Bekenstein J D and Nuovo 1973 Phys. Rev. D 7 2333
[6] Frolov A V and Kofman L 2003 J. Cosmol. Astropart. Phys. 0305 009
Danielsson U K 2005 Phys. Rev. D 71 023516
Bousso R 2005 Phys. Rev. D 71 064024
[7] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
Akbar M 2009 Int. J. Theor. Phys. 48 2665
Akbar M 2008 Chin. Phys. Lett. 25 4199
Mohseni Sadjadi H and Jamil M arXiv:gr-qc/1002.3588
Radicella N and Pavon D 2010 Phys. Lett. B 691 121
Karami K and Ghaffari S 2010 Phys. Lett. B 688 125
Barrow J D 1988 Nucl. Phys. B 310 743
Giovannini M 1999 Phys. Rev. D 59 121301
Zimdahl W and Pavon D 2000 Phys. Rev. D 61 108301
M R Setare 2006 Phys. Lett. B 641 130
Wu C et al 2008 Chem. Inform. 39 49016
[8] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
Jamil M and Akbar M arXiv:gr-qc/1005.3444
Akbar M 2009 Int. J. Theor. Phys. 48 2665
Akbar M 2008 Chin. Phys. Lett. 25 4199
[9] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
[10] Roman T A 1993 Phys. Rev. D 47 1370
[11] Zhu T et al arXiv:0906.4194v2[hep-th]
[12] Ren Z et al 2007 Mod. Phys. Lett. A 22 1737
Arzano M 2006 Phys. Lett. B 634 536
Myung Y S 2003 Phys. Lett. B 574 289
Castro C and Granik A 2003 Found. Phys. 33 445
Carlip S 2000 Class. Quant. Grav. 17 4175
Das S et al 2002 Class. Quant. Grav. 19 2355
Mukherji S and Pal S S 2002 J. High Energy Phys. 0205 026
Chatterjee A and Majumdar P 2004 Phys. Rev. Lett. 92 141301
Maty-Jasek J 2006 Phys. Rev. D 74 104030
Dabholkar A 1995 Phys. Lett. B 347 222
[13] Ghosh A and Mitra P 2005 Phys. Rev. D 71 027502
Meissner K A 2004 Class. Quant. Grav. 21 5245
[14] Hod S 2004 Class. Quant. Grav. 21 L97
[15] Medved A J M 2005 Class. Quant. Grav. 22 133
[16] Jamil M, Saridakis E N and Setare M R 2010 Phys. Rev. D 81 023007
Setare M R 2006 Phys. Lett. B 641 130