摘要We develop a two-dimensional momentum and pitch angle code to solve the typical Fokker--Planck equation which governs wave--particle interaction in space plasmas. We carry out detailed calculations of momentum and pitch angle diffusion coefficients, and temporal evolution of pitch angle distribution for a band of chorus frequency distributed over a standard Gaussian spectrum particularly in the heart of the Earth's radiation belt L=4.5, where peaks of the electron phase space density are observed. We find that the Whistler-mode chorus can produce significant acceleration of electrons at large pitch angles, and can enhance the phase space density for energies of 0.5~1MeV by a factor of 10 or above after about 24h. This result can account for observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.
Abstract:We develop a two-dimensional momentum and pitch angle code to solve the typical Fokker--Planck equation which governs wave--particle interaction in space plasmas. We carry out detailed calculations of momentum and pitch angle diffusion coefficients, and temporal evolution of pitch angle distribution for a band of chorus frequency distributed over a standard Gaussian spectrum particularly in the heart of the Earth's radiation belt L=4.5, where peaks of the electron phase space density are observed. We find that the Whistler-mode chorus can produce significant acceleration of electrons at large pitch angles, and can enhance the phase space density for energies of 0.5~1MeV by a factor of 10 or above after about 24h. This result can account for observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.
[1] Xiao F L, Thorne R M and Summers D 1998 Phys.Plasmas 5 2489 [2] Lu Q M, Wang L Q, Zhou Y and Wang S 2004 Chin.Phys. Lett. {21 129 [3] Wang D Y, Huang G L and Lu Q M 2004 Chin. Phys.Lett. {21 1997 [4] Xiao F L et al 2003 Geophys. Res. Lett. 301479 [5] Xiao F L, Zhao H and He H Y 2005 Chin. Phys. Lett. 22 2451 [6] Xiao F L and Thorne R M 2006 Planet. Space Sci. 54 405 [7] Xiao F L and He H Y 2006 Chin. Phys. Lett. 23267 [8] Xiao F L, Thorne R M and Summers D 2007 Planet. SpaceSci. 55 1257 [9] Baker D N et al 1986 J. Geophys. Res. 91 4265 [10] Summers D, Thorne R M, Xiao F L 1998 J. Geophys.Res. 103 20487 [11] Li L, Cao J and Zhou G 2005 J. Geophys. Res. 110 A03203 [12] Xiao F L, Chen L X, He H Y and Zhou Q H 2008 Chin.Phys. Lett. 25 336 [13] Xiao F L et al 2008 Plasma Sci. Technol. 1027 [14] Baker D N 2002 Science 297(5586) 1486 [15] Elkington S R, Hudson M K and Chan A A 1999 Geophys. Res. Lett. 26 3273 [16] Zong Q G et al 2007 Geophys. Res. Lett. 34L12105 [17] Horne R B et al 2005 Nature 437 227 [18] Brautigam D H and Albert J M 2000 J. Geophys. Res. 105 291 [19] Horne R B et al 2003 J. Geophys. Res. 108(A1)1016 [20] Summers D and Ma C 2000 J. Geophys. Res. { 105 2625. [21] Xiao F L et al 2007 Plasma Sci. Technol. 9545 [22] Xiao F L, Zhou Q H and He H Y 2007 Chin. Phys.Lett. 24 2006 [23] Xiao F L, Zhou Q H, Li C X and Cai A J 2008 Plasma Phys. Control. Fusion 50 062001 [24] Xiao F L and Feng X S 2006 Plasma Sci. Technol. 8 279 [25] Xiao F L 2006 Plasma Phys. Control. Fusion 48 203 [26] Summers D 2005 J. Geophys. Res. 110A08213 [27] Thorne R M, Shprits Y Y, Meredith N P, Horne R B, Li Wand Lyons L R 2007 J. Geophys. Res. 112 A06203 [28] Xiao F L, Shen C L, Wang Y M, Zheng H N and Wang S 2008 J. Geophys. Res. 113 A05203 [29] Xiao F L, Zhou Q H, He H Y, and Tang L J, 2006 Plasma Phys. Control. Fusion 48 1437 [30] Sheeley B W, Moldwin M B, Rassoul H K and Anderson R R2001 J. Geophys. Res. 106 25631