Electrical Conductivity and Current--Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires
LONG Yun-Ze1, DUVAIL Jean-Luc2, CHEN Zhao-Jia3, JIN Ai-Zi3, GU Chang-Zhi3
1College of Physics Science, Qingdao University, Qingdao 2660712Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 44322 Nantes, France3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Electrical Conductivity and Current--Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires
LONG Yun-Ze1, DUVAIL Jean-Luc2, CHEN Zhao-Jia3, JIN Ai-Zi3, GU Chang-Zhi3
1College of Physics Science, Qingdao University, Qingdao 2660712Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 44322 Nantes, France3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
摘要We report the current--voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190±6 nm in diameter and σRT= 11.2±2,Ω-1cm-1) over a wide temperature range from 300 to 10K. With lowering temperature, the I-V characteristics become nonlinear around 50K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV) spectra. The temperature dependence of the resistance below 70K follows ln R ∝ T1/2, which can be interpreted as Efros--Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.
Abstract:We report the current--voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190±6 nm in diameter and σRT= 11.2±2,Ω-1cm-1) over a wide temperature range from 300 to 10K. With lowering temperature, the I-V characteristics become nonlinear around 50K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV) spectra. The temperature dependence of the resistance below 70K follows ln R ∝ T1/2, which can be interpreted as Efros--Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.
[1] Aleshin A N 2006 Adv. Mater. 18 17 [2] Zhang D H et al 2006 Mater. Sci. Eng. B 134 9 [3] Martin C R 1994 Science 266 1961 [4] Delvaux M et al 2000 Synth. Metals 113 275 [5] Duvail J L et al 2007 Appl. Phys. Lett. 90102114 [6] Long Y Z et al 2005 Phys. Rev. B 71 165412 [7] Duvail J L et al 2008 Int. J. Nanotechnol. 5838 [8] Cuenot S et al 2000 Phys. Rev. Lett. 85 1690 [9] Aleshin A N et al 2005 Phys. Rev. B 72 153202 [10] Long Y Z et al 2006 Nanotechnology 17 5903 [11] Kim B H, Park D H, Joo J, Yu S G and Lee S H 2005 Synth. Metals 150 279 [12] Alam M M, Wang J, Guo Y, Lee S P and Tseng H R 2005 J. Phys. Chem. B 109 12777 [13] Duvail J L, R\'{etho P, Garreau S, Louarn G andDemoustier-Champagne S 2002 Synth. Metals 131 123 [14] Duvail J L, R\'{etho P, Fernandez V, Louarn G, Molinie Pand Chauvet O 2004 J. Phys. Chem. B 108 18552 [15] Duvail J L, Long Y, R\'{etho P, Louarn G, Dauginet DePra L and Demoustier-Champagne S 2008 Mol. Cryst. Liq. Cryst. 485 87 [16] Zhang X, Lee J S, Lee G S, Cha D K, Kim M J, Yang D J andManohar S K 2006 Macromolecules 39 470 [17] Samitsu S, Shimonura T, Ito K, Fujimori M, Heike S andHashizume T 2005 Appl. Phys. Lett. 86 233103 [18] Long Y Z, Xiao H M, Chen Z J, Wan M X, Jin A Z and Gu C Z2004 Chin. Phys. 13 1918 [19] Long Y, Chen Z J, Wang W L, Bai F L, Jin A Z and Gu C Z2005 Appl. Phys. Lett. 86 153102 [20] Long Y Z, Wang W L, Bai F L, Chen Z J, Jin A Z and Gu C Z2008 Chin. Phys. B 17 1389 [21] Long Y Z, Huang K, Yuan J H, Han D X, Niu L, Chen Z J, GuC Z, Jin A Z and Duvail J L 2006 Appl. Phys. Lett. 88162113 [22] Kang N, Hu J S, Kong W J, Lu L, Zhang D L, Pan Z W andXie S S 2002 Phys. Rev. B 66 241403 Shen J Y, Chen Z J, Wang N L, Li W J and Chen L J 2006 Appl. Phys. Lett. 89 153132 [23] Ma Y J, Zhang Z, Zhou F, Lu L, Jin A Z and Gu C Z 2005 Nanotechnology 16 746 [24] Long Y Z, Yin Z H, Chen Z J, Jin A Z, Gu C Z, Zhang H Tand Chen X H 2008 Nanotechnology 19 215708 [25] Pollak M and Shklovskii B I 1990 Hopping Transportin Solids (Amsterdam: North-Holland) [26] Efros A L and Pollak M 1985 Electron-ElectronInteraction in Disordered Systems (Amsterdam: North-Holland) [27] Massey J G and Lee M 1995 Phys. Rev. Lett. 754266 [28] Sandow B, Gloos K, Rentzsch R, Ionov A N and SchirmacherW 2001 Phys. Rev. Lett. 86 1845 [29] Kaiser A B and Park Y W 2005 Synth. Met. 152181 Kaiser A B, Rogers S A and Park Y W 2004 Mol. Cryst.Liq. Cryst. 415 115 [30] Long Y Z, Yin Z H, Duvail J L, Chen Z J, Jin A Z and GuC Z (submitted) Long Y Z and Duvail J L 2008 Template Synthesis ofPEDOT Nanowires and Electrical Properties of Individual PEDOTNanowires (16-O-040), 26th Chinese Chemical Society Congress(Tianjin, 13--16 July 2008) [31] Lin Y H, Sun Y C, Jian W B, Chang H M, Huang Y S and LinJ J 2008 Nanotechnology 19 045711 Liu Y L, Wu Z Y, Lin K J, Huang J J, Chen F R, Kai J J, LinY H, Jian W B and Lin J J 2007 Appl. Phys. Lett. 90013105