Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study
TAN Chang-Long1, TIAN Xiao-Hua1,2, CAI Wei2
1Department of Applied Physics, Harbin University of Science and Technology, Harbin 1500802School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study
TAN Chang-Long1, TIAN Xiao-Hua1,2, CAI Wei2
1Department of Applied Physics, Harbin University of Science and Technology, Harbin 1500802School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Effect of Fe on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by the experiments and first-principles calculations. The results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of Nb50Ru50-xFex β phase, leading to the significant decrease of the β to β martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.
Effect of Fe on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by the experiments and first-principles calculations. The results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of Nb50Ru50-xFex β phase, leading to the significant decrease of the β to β martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.
TAN Chang-Long;TIAN Xiao-Hua;CAI Wei. Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study[J]. 中国物理快报, 2008, 25(9): 3372-3374.
TAN Chang-Long, TIAN Xiao-Hua, CAI Wei. Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study. Chin. Phys. Lett., 2008, 25(9): 3372-3374.
[1] Wayman C M 1992 Prog. Mater. Sci. 36 203 [2] Otsuka K, Ren X 2005 Prog. Mater. Sci. 50511 [3] Otsuka K, X. Ren 1999 Intermetallics 7 511 [4] Beyer J et al 1995 Mater. Res. Soc. Symp. Proc. 360 443 [5] Otsuka K, Wayman C M 1998 Shape Memory Materials(Cambridge: Cambridge University Press) [6] Firstov G S et al 2004 Mater. Sci. Eng. A 3782 [7] Chastaing K et al 2008 Mater. Sci. Eng. A 481-452 702 [8] Donkersloot H C et al 1970 J. Less-Common Met. 20 83 [9] Das B K et al 1970 Mater. Sci. Eng. 6 248 [10] Scherling M A et al 1970 Metall. Trans. 13273 [11] Das B and Lieberman D S 1975 Acta Metall. 23579 [12] Das B et al 1976 Acta Metall. 24 37 [13] Fonda R W et al 1998 Scripta Mater. 39 1031 [14] Fonda R W, Vandermeer R A 1997 Philos. Mag. A 76 119 [15] Fonda R W et al 1999 Mater. Sci. Eng. A 273-275 275 [16] Gao X, Zheng Y F, Cai W, Zhang S, Zhao L C 2004 J.Mater. Sci. Technol. 20 97 [17] Lindquist P G, Wayman C M, Duering T W 1990 Engineering Aspects of Shape Memory Alloys (New York:Butterworth-Heinemann) [18] Chen F et al 2005 J. Mater. Sci. 40 219 [19] Segall M et al 2002 J. Phys. Condens. Matter 14 2717 [20] Vanderbilt D 1990 Phys. Rev. B 41 7892 [21] Shapiro S M et al 2006 Phys. Rev. B 73 214114 [22] Chen J et al 2006 Appl. Phys. Lett. 89 231921