摘要We report on the single photon emission from single InAs/GaAs self-assembled Stranski--Krastanow quantum dots up to 80K under pulsed and continuous wave excitations. At temperature 80K, the second-order correlation function at zero time delay, g(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.
Abstract:We report on the single photon emission from single InAs/GaAs self-assembled Stranski--Krastanow quantum dots up to 80K under pulsed and continuous wave excitations. At temperature 80K, the second-order correlation function at zero time delay, g(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.
DOU Xiu-Ming;SUN Bao-Quan;CHANG Xiu-Ying;XIONG Yong-Hua;HUANG She-Song;NI Hai-Qiao;NIU Zhi-Chuan. Single-Photon Emission at Liquid Nitrogen Temperature from a Single InAs/GaAs Quantum Dot[J]. 中国物理快报, 2008, 25(9): 3231-3233.
DOU Xiu-Ming, SUN Bao-Quan, CHANG Xiu-Ying, XIONG Yong-Hua, HUANG She-Song, NI Hai-Qiao, NIU Zhi-Chuan. Single-Photon Emission at Liquid Nitrogen Temperature from a Single InAs/GaAs Quantum Dot. Chin. Phys. Lett., 2008, 25(9): 3231-3233.
[1] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M,Zhang L D, Hu E and Imamoglu A 2000 Science 290 2282 [2] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502 [3] Zwiller V, Blom H, Jonsson P, Panev N, Jeppesen S, TsegayeT, Goobar E, Pistol M E, Samuelson L and Bj\"{ork G 2001 Appl.Phys. Lett. 78 2476 [4] Thompson R M, Stevenson R M, Shields A J, Farrer I, Lobo CJ, Ritchie D A, Leadbeater M L and Pepper M 2001 Phys. Rev. B 64 201302 [5] Ohnesorge B, Bayer M, Forchel A and Reithmaier J P 1997 Phys. Rev. B 56 R4367 [6] G\'{erard J M, Sermage B, Gayral B, Legrand B, Costard Eand Thierry-Mieg V 1998 Phys. Rev. Lett. 81 1110 [7] Yuan Z L, Kardinal B E, Stivenson R M, Shields A J, Lobo CJ, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102 [8] Beveratos A, K\"{uhn S, Brouri R, Gacoin T, Poizat J-P,and Grangier P 2002 Eur. Phys. J. D 18 191 [9] Basche T, Moerner W E, Orrit M, and Talon H, 1992 Phys. Rev. Lett. 69 1516 [10] Mirin R P 2004 Appl. Phys. Lett. 84 1260 [11] Kiraz A, Michler P, Becher C, Gayral B, Imamoglu A, ZhangL D, Hu E, Schoenfeld W V, and Petroff P M 2001 Appl. Phys.Lett. 78 3932 [12] Vu\v{covi\'c J, Fattal D, Santori C, Solomon G andYamamoto Y 2003 Appl. Phys. Lett. 82 3596 [13] Press D, G\"{otzinger S, Reitzenstein S, Hofmann C,L\"{offler A, Kamp M, Forchel A and Yamamoto Y 2007 Phys. Rev.Lett. 98 117402 [14] Dou X M, Sun B Q, Huang S S, Ni H Q and Niu Z C 2008 Chin. Phys. Lett. 25 501 [15] Brouri R, Beveratos A, Poizat J P, and Grangier P 2000 Opt. Lett. 25 1294