Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σZ achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented.
Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σZ achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented.
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
Mukhtar Ahmed Rana;Shahid Manzoor. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target[J]. 中国物理快报, 2008, 25(9): 3208-3211.
Mukhtar Ahmed Rana, Shahid Manzoor. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target. Chin. Phys. Lett., 2008, 25(9): 3208-3211.
[1]Dreute J, Heinrich W, Rush G and Wiegel B 1991 Phys.Rev. C 44 1057 [2] Rana M A 2008 Nucl. Instr. Meth. B 266 271 [3] Rana M A 2008 Nucl. Instr. Meth. A (in press, DOI:10.1016/j.nima.2008.04.025) [4] Rana M A, Khan E U, Shahzad M I, Manzoor S, Sher G andQureshi I E 2007 Radiat. Meas. 42 125 [5] Rana M A 2007 Radiat. Meas. 42 317 [6] Price P B and He Y D 1991 Phys. Rev. C 43 835 [7] Hirzebruch S E, Rusch G, Winkel E and Heinrich W 1993 Nucl. Instr. Meth. B 74 519 [8] Nilsen B S et al 1994 Phys. Rev. C 50 1065 [9] Sampsonidis D et al 1995 Phys. Rev. C 51 3304 [10] Cecchini S et al 1993 Astroparticle Phys. 1369 [11] Manzoor S et al 2005 Radiat. Meas. 40 433 [12] Liu, J Y, Guo W J, Wang S J, Zuo W, Zhao Q and Yang Y F2001 Phys. Rev. Lett. 86 975 [13] He Z Y et al 1996 Nucl. Phys. A 598 248 [14] Bian B A, Zhang F S, Zhou H Y 2008 Chin. Phys.Lett. 25 451 [15] Cecchini S et al 1996 Nuovo Cim. A 109 1119 [16] Giacomelli G et al 1998 Nucl. Instrum. Meth. A 411 41 [17] Bradt H L, Peters B 1950 Phys. Rev. 77 54 [18] Brechtmann C, Heinrich W, Benton E V 1989 Phys.Rev. C 39 2222 [19] Scheidenberger C et al 2004 Phys. Rev. C 70014902 [20] Hirzebruch et al S E 1995 Phys. Rev. C 512085 [21] Geer L Y et al 1995 Phys. Rev. C 52 334 [22] Dekhissi H et al 2000 Nucl. Phys. A 662 207 [23] Cecchini S et al 2002 Nucl. Phys. A 707 513