1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
Soliton Structure of a Higher Order (2+1)-Dimensional Nonlinear Evolution Equation of Barothropic Relaxing Media beneath High-Frequency Perturbations
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
摘要From the dynamical equation of barothopic relaxing media beneath pressure perturbations, followed with the reductive perturbative analysis, we derive and investigate the soliton structure of a (2+1)-dimensional nonlinear evolution equation describing high-frequency regime of perturbations. Thus, by means of the Hirota's bilinearization method, we unearth three typical patterns of loop-, cusp- and hump-like shapes depending strongly upon a dissipation parameter.
Abstract:From the dynamical equation of barothopic relaxing media beneath pressure perturbations, followed with the reductive perturbative analysis, we derive and investigate the soliton structure of a (2+1)-dimensional nonlinear evolution equation describing high-frequency regime of perturbations. Thus, by means of the Hirota's bilinearization method, we unearth three typical patterns of loop-, cusp- and hump-like shapes depending strongly upon a dissipation parameter.
[1] Tang X Y and Lou S Y 2003 J. Math. Phys. 444000 [2] Danylenko V A, Sorokina V V and Vladimirov V A 1993 J. Phys. A: Math. Gen. 26 7125 [3] Nayfey A H 1973 Perturbation Methods (New York:Wiley) [4] Vakhnenko V O 1999 J. Math. Phys. 40 2011 [5] Lou S Y 1998 Phys. Rev. Lett. 80 5027 [6] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer) [7] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press) [8] Kakuhata H and Konno K 1999 J. Phys. Soc. Jpn. 48 757 [9] Watanabe S 1977 J. Phys. Soc. Jpn. 45 276 [10] Sch$\ddot{a$fer T and Wayne C E 2004 Physica D 196 90 [11] Alagesan T and Porsezian K 1997 Chaos SolitonsFractals 8 1645 [12] Kuetche K V, Bouetou B T and Kofane T C 2006 J.Phys. A: Math. Gen. 39 12355 [13] Kuetche K V, Bouetou B T and Kofane T C 2008 Phys.Lett. A 372 665 [14] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 126001 [15] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 073001 [16] Parkes E J 2008 Chaos Solitons Fractals 38154 [17] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. A: Math. Theor. 40 5585 [18] Sakovich A and Sakovich S 2006 J. Phys. A: Math. Gen. 39 L361 [19] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 024004 [20] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 116002 [21] Malykh K V and Ogorodnikov I L 1977 Dynamics ofContinuous Media (Moscow: Novosibirsk)