Enhanced Quantum Reflection of Ultracold Atoms with Strong Interatomic Interaction
LIU Min, ZHAN Ming-Sheng
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
Enhanced Quantum Reflection of Ultracold Atoms with Strong Interatomic Interaction
LIU Min, ZHAN Ming-Sheng
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
We calculate the reflection probability for ultracold alkali atoms incident on a solid surface. By considering the interatomic interaction and using the WKB method, it is shown that the repulsive interaction between atoms has the effect of increasing the reflection probability. The increasing amplitude is related with the interatomic interaction and the depth of atom-surface potential. In addition, we also perform a numerical calculation to testify the effect of the interatomic interaction, and the analytic result is proven by the numerical result.
We calculate the reflection probability for ultracold alkali atoms incident on a solid surface. By considering the interatomic interaction and using the WKB method, it is shown that the repulsive interaction between atoms has the effect of increasing the reflection probability. The increasing amplitude is related with the interatomic interaction and the depth of atom-surface potential. In addition, we also perform a numerical calculation to testify the effect of the interatomic interaction, and the analytic result is proven by the numerical result.