摘要The nonlinearization method of spectral problem is developed and applied to the derivative nonlinear Schrodinger equation (DNLS). As a result, an integrable decomposition of the DNLS equation is obtained.
Abstract:The nonlinearization method of spectral problem is developed and applied to the derivative nonlinear Schrodinger equation (DNLS). As a result, an integrable decomposition of the DNLS equation is obtained.
[1] Rogister A 1971 Phys. Fluids 14 2733 [2] Mj\o lhus E 1976 J. Plasma Phys. 16 321 [3]Mj\o lhus E 1989 Physica Scripta 40 227 [4] Ruderman M S 2002 J. Plasma Phys. 67 271 [5]Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn (NewYork: Academic) [6] Tzoar N and Jian M 1981 Phys. Rev. A 23 1266 [7] Nakat I 1991 J. Phys. Soc. Jpn. 60 3976 [8] Nakata I and Ono H and Yoida M 1993 Prog. Theor. Phys. 90 739 [9]Daniel M and Veerakumar V 2002 Phys. Lett. A 30277 [10] Kaup D J and Newell A C 1978 Prog. Theor. Phys. 19 798 [11]Cao C W and Geng X G 1990 Nonlinear Physics,Research Reports in Physics ed Gu C H, Li Y S and Tu G Z(Berlin: Springer) p 66 [12] Qiao Z J 1993 J. Math. Phys. 34 3110 [13] Zeng Y B 1994 J. Phys. D 73 171 [14] Zeng Y B and Hietarinta J 1996 J. Phys. A 29 5241 [15]Zeng Y B and Ma W X 1999 J. Math. Phys. 40 6526 [16]Ji J and Zhou R G 2006 Chaos, Solitons \& Fractals 30 993 [17] Geng X G and Cao C W 1999 Phys. Lett. A 261 289 [18] Babelon O and Villet C M 1990 Phys. Lett. B 237 411