Symmetries of the Variable Coefficient KdV Equation and Three
Hierarchies of the Integrodifferential Variable Coefficient KdV Equation
ZHANG Jiefang1 , HAN Ping2
1 Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004
2 Department of Physics, Zhoushan Teacher’s College, Zhoushan 316004
Symmetries of the Variable Coefficient KdV Equation and Three
Hierarchies of the Integrodifferential Variable Coefficient KdV Equation
ZHANG Jiefang1 ;HAN Ping2
1 Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004
2 Department of Physics, Zhoushan Teacher’s College, Zhoushan 316004
关键词 :
02.20.+b ,
11.10.Lm ,
02.90.+p
Abstract : By using a simple method to factorize the recursion operator, the inverse recursion operator of the variable coefficient KdV cquqtion is exhibited explicitly. Thee new sets of symmetries of the variable coefficient KdV equation arc given in addition to the known K symmetries and τ symmetries. Starting from these three sets of symmetries, we obtained three hierarchies of the variable coefficient KdV integro-differential equations.
Key words :
02.20.+b
11.10.Lm
02.90.+p
出版日期: 1994-12-01
:
02.20.+b
11.10.Lm
(Nonlinear or nonlocal theories and models)
02.90.+p
(Other topics in mathematical methods in physics)
引用本文:
ZHANG Jiefang;HAN Ping. Symmetries of the Variable Coefficient KdV Equation and Three
Hierarchies of the Integrodifferential Variable Coefficient KdV Equation
[J]. 中国物理快报, 1994, 11(12): 721-723.
ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and Three
Hierarchies of the Integrodifferential Variable Coefficient KdV Equation
. Chin. Phys. Lett., 1994, 11(12): 721-723.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1994/V11/I12/721
[1]
HU Heng-Chun;ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation [J]. 中国物理快报, 2007, 24(1): 1-4.
[2]
DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan;SHI Yu-Ren; WANG Hong-Yan. Nonlinear Wave in a Disc-Shaped Bose--Einstein Condensate [J]. 中国物理快报, 2006, 23(8): 2000-2003.
[3]
LOU Sen-Yue. Localized Excitations in (3+1) Dimensions: Dromions, Ring-Shape and Bubble-Like Solitons [J]. 中国物理快报, 2004, 21(6): 1020-1023.
[4]
LIU Yin-Ping;LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations [J]. 中国物理快报, 2003, 20(3): 317-320.
[5]
LIU Yin-Ping;LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations [J]. 中国物理快报, 2002, 19(9): 1228-1230.
[6]
CHEN Yu-Guang;CHEN Hong;ZHANG Yu-Mei. Ground-State Properties of a Local Sine-Gordon Model with Two Frequencies [J]. 中国物理快报, 2002, 19(5): 727-729.
[7]
CHEN Kai;HOU Bo-yu;YANG Wen-li;ZHEN yi. Nondynamical r-Matrix Structure of the sl2 Trigonometric Ruijsenaars-Schneider Model
[J]. 中国物理快报, 1999, 16(1): 1-3.
[8]
ZHANG Jie-fang. Multiple Soliton Solutions of the Dispersive Long-Wave Equations [J]. 中国物理快报, 1999, 16(1): 4-5.
[9]
LÜXian-qing. Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models [J]. 中国物理快报, 1997, 14(8): 561-564.
[10]
LOU Sen-yue;CHEN Li-li;WU Qi-xian. New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation [J]. 中国物理快报, 1997, 14(1): 1-4.
[11]
JI Da-ren;ZHANG Jian-bo. A Cluster Algorithm for the 2-D SU(3) x SU(3) Chiral Model [J]. 中国物理快报, 1996, 13(7): 549-552.
[12]
HU Zhan-ning. Remarks on the Three-dimensional Lattice Model [J]. 中国物理快报, 1996, 13(6): 412-415.
[13]
XU Xixiang. New Finite-Dimensional Integrable Systems by Binary Nonlinearization of WKI Equations [J]. 中国物理快报, 1995, 12(9): 513-516.
[14]
HU Zhanning. On the Star-Triangle Relation and the Star-Square Relation in the Baxter-Bazhanov Model [J]. 中国物理快报, 1995, 12(6): 330-333.
[15]
ZENG Gaojian;KUANG Leman;LI Jinhui. Coherent State of N Components and Cycle Representation [J]. 中国物理快报, 1995, 12(3): 132-135.