We demonstrate that digital volume gratings can be fabricated in fused silica glass conveniently by direct femtosecond laser writing. The diffraction efficiencies of volume gratings can be essentially modulated by simply stacking and offsetting the unit structure. A series of volume gratings, which have the pitches of 5 μm and the size of 1mm×1mm, have been fabricated with the writing speed of 500 μm/s, with which the processing period of each grating layer could be reduced to several minutes with a 1-kHz femtosecond laser system. Results show that the power spectrum of the diffracted waves of the volume gratings are dependent on the layer gap and layer offsetting.
We demonstrate that digital volume gratings can be fabricated in fused silica glass conveniently by direct femtosecond laser writing. The diffraction efficiencies of volume gratings can be essentially modulated by simply stacking and offsetting the unit structure. A series of volume gratings, which have the pitches of 5 μm and the size of 1mm×1mm, have been fabricated with the writing speed of 500 μm/s, with which the processing period of each grating layer could be reduced to several minutes with a 1-kHz femtosecond laser system. Results show that the power spectrum of the diffracted waves of the volume gratings are dependent on the layer gap and layer offsetting.
WANG Ying;LI Yu-Hua;LU Pei-Xiang. Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica[J]. 中国物理快报, 2010, 27(4): 44213-044213.
WANG Ying, LI Yu-Hua, LU Pei-Xiang. Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica. Chin. Phys. Lett., 2010, 27(4): 44213-044213.
[1] Ichikawa H and Nagahama K 2007 Opt. Commun. 271 9 [2] Davis K, Miura K, Sugimoto N and Hirao K 1996 Opt. Lett. 21 1729 [3] Glezer E and Mazur E 1997 Appl. Phys. Lett. 71 882 [4] Liu D, Li Y, Dou Y, Guo H, Yang H and Gong Q 2008 Chin. Phys. Lett. 25 2500 [5] Qian B, Liao Y, Dong G, Luo F, Su L, Sun S, Qiu J 2009 Chin. Phys. Lett. 26 070601 [6] Li X, Winfield R, O'Brien S and Chen L 2009 Chin. Phys. Lett. 26 094203 [7] Schaffer C, Brodeur A and Mazur E 2001 Meas. Sci. Technol. 12 1784 [8] Cheng Y, Sugioka K, Midorikawa K, Masuda M, Toyoda K, Kawachi M and Shihoyama K 2003 Opt. Lett. 28 55 [9] Yamada K, Watanabe W, Kintaka K, Nishii J and Itoh K 2003 Jpn. J. Appl. Phys. 42 6916 [10] Zeng H, Wu J, Xu H and Wu K 2006 Phys. Rev. Lett. 96 083902 [11] Yang X, Wu J, Peng Y, Tong Y, Yuan S, Ding L, Xu Z and Zeng H 2009 Appl. Phys. Lett. 95 111103 [12] Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J and Jiang Y 2002 Appl. Phys. Lett. 80 1508 [13] Qian G, Guo J, Wang M, Si J, Qiu J and Hirao K 2003 Appl. Phys. Lett. 83 2327 [14] Cheng Y, Sugioka K, Masuda M, Shihoyama K, Toyoda K and Midorikawa K 2003 Opt. Express 11 1809 [15] He F, Sun H, Huang M, Xu J, Liao Y, Zhou Z, Cheng Y, Xu Z, Sujioka K and Midorikawa K 2009 Appl. Phys. A 97 853 [16] Takeshima N, Narita Y, Tanaka S, Kuroiwa Y and Hirao K 2005 Opt. Lett. 30 352 [17] Liu J, Zhang Z, Ju Z, Xiao G, Sun F, Chang S and Flueraru C 2007 Appl. Phys. B 86 151 [18] Lee S and Nikumb S 2007 Opt. Laser Technol. 39 1328 [19] Fu L, Marshall G, Bolger J, Steinvurzel P, Maegi E, Withford M and Eggleton B 2005 Electron. Lett. 41 638 [20] Liu D, Li Y, Liu M, Yang H and Gong Q 2008 Appl. Phys. B 91 597