Soliton and Soliton-Pair as the Intrinsic Phonon Localized Modes in an Anharmonic Monoatomic Chain
HUANG Guoxiang, LI Hongfang, DAI Xianxi
Department of Physics, Fudan University, Shanghai 200433
Soliton and Soliton-Pair as the Intrinsic Phonon Localized Modes in an Anharmonic Monoatomic Chain
HUANG Guoxiang;LI Hongfang;DAI Xianxi
Department of Physics, Fudan University, Shanghai 200433
关键词 :
63.20.Ry ,
63.20.Pw
Abstract : With the use of coherent-state method, a quantum approach for the intrinsic phonon localized modes in an anharmonic monoatomic chain is given. It is shown that the envelope soliton with zerogroup velocity can exist in the lattice and that the frequency of carrier wave is above the top of the frequency band. A new type of the intrinsic phonon localized mode which we call the soliton-pair intrinsic localized mode in the chain is also reported.
Key words :
63.20.Ry
63.20.Pw
出版日期: 1992-03-01
引用本文:
HUANG Guoxiang;LI Hongfang;DAI Xianxi. Soliton and Soliton-Pair as the Intrinsic Phonon Localized Modes in an Anharmonic Monoatomic Chain[J]. 中国物理快报, 1992, 9(3): 151-154.
HUANG Guoxiang, LI Hongfang, DAI Xianxi. Soliton and Soliton-Pair as the Intrinsic Phonon Localized Modes in an Anharmonic Monoatomic Chain. Chin. Phys. Lett., 1992, 9(3): 151-154.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1992/V9/I3/151
[1]
WEN Zhen-Ying;ZHAO Hong;WANG Shun-Jin;ZHANG Xiu-Ming. Effect of Nonlinearity on Scattering Dynamics of Solitary Waves [J]. 中国物理快报, 2006, 23(8): 2034-2037.
[2]
XU Hai-Qing;TANG Yi. Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity [J]. 中国物理快报, 2006, 23(6): 1544-1547.
[3]
GU Huai-Qiang;WANG Zhi-Cheng;JIN Kang;TAN Lei. Bloch Oscillations of Two-Component Bose--Einstein Condensates in Optical Lattices [J]. 中国物理快报, 2006, 23(3): 556-559.
[4]
WEN Zhen-Ying;ZHAO Hong. Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model [J]. 中国物理快报, 2005, 22(6): 1339-1343.
[5]
XIANG Shi-Kai;CAI Ling-Cang;JING Fu-Qian;WANG Shun-Jin/sup>. First-Principle-Based Calculations of the Hugoniot of Cu [J]. 中国物理快报, 2005, 22(2): 424-426.
[6]
WANG Deng-Long;YAN Xiao-Hong;TANG Yi. An Envelope Soliton in a Nonlinear Chain with the Power-Law Dependence of Long-Range Interaction [J]. 中国物理快报, 2003, 20(4): 554-556.
[7]
XIA Qing-Lin;JIANG Dong-Chu. Moving Compacton-like Kink in a Purely Anharmonic Lattice with
Symmetric On-Site Potential [J]. 中国物理快报, 2003, 20(1): 105-107.
[8]
ZHANG Zhuo;TANG Yi. Parametrically Driven Nonlinear Oscillators with an Impurity
[J]. 中国物理快报, 2002, 19(2): 246-248.
[9]
ZHOU Guang-Hui;XIA Qing-Lin;PAN Liu-Xian;YAN Jia-Ren. Asymmetry Localized Modes in an Anharmonic Sphalerite-Structure Lattice [J]. 中国物理快报, 2000, 17(12): 899-901.
[10]
LOU Senyue;YU Jun;LIN Ji;HUANG Guoxiang;. Macro-Experimental Observation of the Staggered Mode in Lattice System [J]. 中国物理快报, 1995, 12(7): 400-403.
[11]
WANG Shaofeng. Existence of Localized Modes in a Purely Anharmonic Chain [J]. 中国物理快报, 1995, 12(2): 95-97.
[12]
ZHANG Haifeng;TANG Tao;XU Wenlan;LI Yongping. Vibrational Properties Study on Canter Fractal Structure [J]. 中国物理快报, 1995, 12(2): 91-94.
[13]
LIU Zhengyou;LIU Youyan;TIAN Decheng;XIA Haibo. Scaling and Scaling-Relevant Dynamical Properties of Penrose Tiling [J]. 中国物理快报, 1995, 12(2): 98-101.
[14]
ZHANG Zhiyong;XIONG Shijie. Reflectionless Acoustic Waves in One-Dimensional Elastic Structure with Correlated Disorder [J]. 中国物理快报, 1995, 12(10): 609-612.
[15]
TIAN Decheng; LIU Zhengyou;JIANG Qing;WANG Lilong. Optical and Acoustic Branches in the Vibrational Spectrum of a
Diatomic Penrose Lattice
[J]. 中国物理快报, 1993, 10(10): 601-604.