Sensitivity of Exponents of Three-Power Laws to Hybrid Ratio in Weighted HUHPM
FANG Jin-Qing, BI Qiao, LI Yong, LU Xin-Biao, LIU Qiang
China Institute of Atomic Energy, PO Box 275-81, Beijing 102413
Sensitivity of Exponents of Three-Power Laws to Hybrid Ratio in Weighted HUHPM
FANG Jin-Qing;BI Qiao;LI Yong;LU Xin-Biao;LIU Qiang
China Institute of Atomic Energy, PO Box 275-81, Beijing 102413
关键词 :
89.75.-k ,
89.75.Da ,
89.75.Fb
Abstract : The sensitivity of exponents of three-power laws for node degree, node strength and edged weight to hybrid ratio are studied analytically and numerically in the weighted harmonious unifying hybrid preferential model (HUHPM), which is extended from un-weighted hybrid preferential attachment model we proposed previously [Chin. Phys. Lett. 22(2005)719]. Our weighted HUHPMs plus the Barrat--Barthelemy--Vespignani model and the traffic-driven evolution model, respectively, are taken as two typical examples for demonstration and application of the HUHPM.
Key words :
89.75.-k
89.75.Da
89.75.Fb
出版日期: 2007-01-01
:
89.75.-k
(Complex systems)
89.75.Da
(Systems obeying scaling laws)
89.75.Fb
(Structures and organization in complex systems)
引用本文:
FANG Jin-Qing;BI Qiao;LI Yong;LU Xin-Biao;LIU Qiang. Sensitivity of Exponents of Three-Power Laws to Hybrid Ratio in Weighted HUHPM[J]. 中国物理快报, 2007, 24(1): 279-282.
FANG Jin-Qing, BI Qiao, LI Yong, LU Xin-Biao, LIU Qiang. Sensitivity of Exponents of Three-Power Laws to Hybrid Ratio in Weighted HUHPM. Chin. Phys. Lett., 2007, 24(1): 279-282.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2007/V24/I1/279
[1]
ZHAO Hui;GAO Zi-You. Local Events and Dynamics on Weighted Complex Networks [J]. 中国物理快报, 2006, 23(8): 2311-2314.
[2]
SUN Hui-Jun;WU Jian-Jun;. Complex Behaviour for the Origin and Destination Matrix Estimation Problem [J]. 中国物理快报, 2006, 23(8): 2323-2326.
[3]
Venkatesh Rajagopalan;Asok Ray. Wavelet Space Partitioning for Symbolic Time Series Analysis [J]. 中国物理快报, 2006, 23(7): 1951-1954.
[4]
BI Qiao;FANG Jin-Qing;ZOU Qin. Certain Properties of a Quantum Information Network Driven by External Fields [J]. 中国物理快报, 2006, 23(7): 1947-1950.
[5]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[6]
DUAN Wen-Qi;CHEN Zhong;LIU Zeng-Rong. Epidemic Spreading in Contact Networks Based on Exposure Level [J]. 中国物理快报, 2006, 23(5): 1347-1350.
[7]
LIU Zi-Ran;YAN Jia-Ren;ZHANG Jian-Guo;WANG Li. Epidemic Dynamics with Feedback Mechanism in Exponential Networks [J]. 中国物理快报, 2006, 23(5): 1343-1346.
[8]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.
[9]
KE Jian-Hong;LIN Zhen-Quan;CHEN Xiao-Shuang. Pregelation Behaviour of Coagulation Processes with the Constant-Reaction-Number Kernel [J]. 中国物理快报, 2006, 23(3): 720-723.
[10]
LIU Jian-Guo;DANG Yan-Zhong;WANG Zhong-Tuo. Multistage Random Growing Small-World Networks with Power-Law Degree Distribution [J]. 中国物理快报, 2006, 23(3): 746-749.
[11]
XU Xin-Ping;LIU Feng;LI Wei. Growing Small-World Networks Based on a Modified BA Model [J]. 中国物理快报, 2006, 23(3): 750-753.
[12]
CAI Shi-Min;ZHOU Pei-Ling;YANG Hui-Jie;YANG Chun-Xia;WANG Bing-Hong;ZHOU Tao;. Empirical Study on the Volatility of the Hang-Seng Index [J]. 中国物理快报, 2006, 23(3): 754-757.
[13]
ZHAO Hui;GAO Zi-You;YAN Gang;WANG Wen-Xu. Self-Organization of Topology and Weight Dynamics on Networks from Merging and Regeneration [J]. 中国物理快报, 2006, 23(2): 275-278.
[14]
FU Bai-Bai;GAO Zi-You. An Estimation for the Power-Law Distribution Parameter Based on Entropy [J]. 中国物理快报, 2006, 23(2): 520-522.
[15]
KE Jian-Hong;LIN Zhen-Quan;CHEN Xiao-Shuang. A Solvable Symbiosis-Driven Growth Model [J]. 中国物理快报, 2006, 23(12): 3334-3337.