ZHANG Zhe1, WANG Ting-Ying1, ZHANG Gui-Zhong1, W.T. Hill III2
¹Key Lab of Optoelectronic Information and Technical Science of MOE, College of Precision Instrument and Optoelectronics
²Institute for Physical Science and Technology, University of Maryland, College Park, MD20742, USA
Exact Timing of Returned Molecular Wavepacket
ZHANG Zhe1;WANG Ting-Ying1;ZHANG Gui-Zhong1;W.T. Hill III2
¹Key Lab of Optoelectronic Information and Technical Science of MOE, College of Precision Instrument and Optoelectronics
²Institute for Physical Science and Technology, University of Maryland, College Park, MD20742, USA
Abstract: An ionizing wavepacket of electron will re-visit its parent molecular ion during photoionization by strong laser field. This scenario is associated with physical concepts such as molecular re-scattering/collision, interference, diffraction, molecular clock, and generation of XUV light via high-order harmonic generation. On the workbench of a reduced dimensionality model of molecular hydrogen ions irradiated by laser pulse of 0.01--10.0 a.u. intensities, one-cycle pulsewidth, and 800 nm wavelength, by deploying a momentum operator on the time-dependent wavefunction of an ionizing wavepacket, we can determine, in a precise manner, the exact time instant for the re-visiting electron to come back to the cation position. The time value is 57.6% of an optical cycle of the exciting laser pulse. This result may be useful in attosecond pump--probe experiments or molecular clock applications.
ZHANG Zhe;WANG Ting-Ying;ZHANG Gui-Zhong;W.T. Hill III. Exact Timing of Returned Molecular Wavepacket[J]. 中国物理快报, 2006, 23(12): 3242-3244.
ZHANG Zhe, WANG Ting-Ying, ZHANG Gui-Zhong, W.T. Hill III. Exact Timing of Returned Molecular Wavepacket. Chin. Phys. Lett., 2006, 23(12): 3242-3244.