YANG-BAXTER EQUATION, ALGEBRAS AND BRAID GROUP FOR THE Zn-SYMMETRIC STATISTICAL MODEL
WEI Hua, HOU Boyu
Institute of Modern Physics, Northwest University, Xian, 710069
YANG-BAXTER EQUATION, ALGEBRAS AND BRAID GROUP FOR THE Zn-SYMMETRIC STATISTICAL MODEL
WEI Hua;HOU Boyu
Institute of Modern Physics, Northwest University, Xian, 710069
关键词 :
05.20.-y ,
02.20.+b ,
64.60.Cn
Abstract : For the Zn-symmetric statistical model the Yang-Baxter equation and the equations for the operator representations is reduced to explicit spectroparameter-independent forms, and the quantum algebra for the representations is obtained. Moreover, we present some elliptic representations of braid group, which include a new trigonometric representation as degenerated case.
Key words :
05.20.-y
02.20.+b
64.60.Cn
出版日期: 1990-08-01
引用本文:
WEI Hua;HOU Boyu. YANG-BAXTER EQUATION, ALGEBRAS AND BRAID GROUP FOR THE Zn-SYMMETRIC STATISTICAL MODEL
[J]. 中国物理快报, 1990, 7(8): 337-340.
WEI Hua, HOU Boyu. YANG-BAXTER EQUATION, ALGEBRAS AND BRAID GROUP FOR THE Zn-SYMMETRIC STATISTICAL MODEL
. Chin. Phys. Lett., 1990, 7(8): 337-340.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1990/V7/I8/337
[1]
N. Seferoglu;A. Özkan;B. Kutlu. Finite Size Effect for the First-Order Phase Transition of the Three-Dimensional Blume--Capel Model on a Cellular Automaton [J]. 中国物理快报, 2006, 23(9): 2526-2529.
[2]
SHI Qing-Fan;SUN Gang;HOU Mei-Ying;LU Kun-Quan. Segregation in Vertically Vibrated Binary Granular Mixtures with Same Size [J]. 中国物理快报, 2006, 23(11): 3080-3083.
[3]
YANG Chun-Xia;ZHOU Tao;ZHOU Pei-Ling;LIU Jun;TANG Zi-Nan. Evolvement Complexity in an Artificial Stock Market [J]. 中国物理快报, 2005, 22(4): 1014-1017.
[4]
ZHANG Xiao-Peng;BAO Jing-Dong. Negative Resistance in a Two-Dimensional System with Entropic Barrier [J]. 中国物理快报, 2005, 22(2): 283-286.
[5]
YOU Yu;LUO Meng-Bo;YING He-Ping;CHEN Qing-Hu. Short-Time Resistively-Shunted Junction Dynamic Study on Two-Dimensional Fully Frustrated XY Model [J]. 中国物理快报, 2003, 20(12): 2222-2225.
[6]
ZHOU Shi-Qi. Thermodynamic Properties of Hard-Sphere Fluid under Confined
Condition Based on Bridge Density Function [J]. 中国物理快报, 2003, 20(12): 2107-2109.
[7]
LIU Yin;QIN Xiao-Ying;WANG Li;ZHANG Ming-Xu. Structural Evolution of Nanostructured γ-Ni-28Fe Alloy Investigated by Using the Internal Friction Technique [J]. 中国物理快报, 2003, 20(1): 99-101.
[8]
LUO Meng-Bo;CHEN Qing-Hu;JIAO Zheng-Kuan. Influence of the Boundary Condition on the Short-Time Dynamic Behaviour of the Ising-Like Phase Transition in Square-Lattice Fully Frustrated XY Models [J]. 中国物理快报, 2002, 19(8): 1155-1157.
[9]
TANG Yan-Li;MA Yu-Qiang. Molecular Dynamics of Structural Organization in Binary Fluids with Fixed Particles [J]. 中国物理快报, 2002, 19(6): 835-838.
[10]
MA Dong-Mei;ZOU Liang-Jian;. Magnetic Long-Range Order and Colossal Magnetoresistance Effect in Double Exchange Ladders [J]. 中国物理快报, 2001, 18(9): 1264-1267.
[11]
LUO Meng-Bo;CHEN Qing-Hu;XU Zhu-An;JIAO Zheng-Kuan. Second-Order Phase Transition in the Two-Dimensional Classical Lattice Coulomb Gas of Half-Integer Charges [J]. 中国物理快报, 2001, 18(7): 947-949.
[12]
XIAO Chang-Ming;JIN Guo-Jun;Ma Yu-Qiang. Packing Effect of Excluded Volume on Hard-Sphere Colloids [J]. 中国物理快报, 2001, 18(7): 950-952.
[13]
ZHANG Ji-Qian;XIN Hou-Wen. Stochastic Multiresonance Induced by an Optimal Noise Pulse Interval Duo to Hopping of Energy Levels [J]. 中国物理快报, 2001, 18(7): 870-873.
[14]
WANG Xian-Zhi. Yang-Lee Circle Theorem for an Antiferromagnetic Heisenberg Ladder [J]. 中国物理快报, 2001, 18(7): 953-954.
[15]
NI Jun;LIU Hua;GU Bing-Lin. Oscillatory Phase Behaviour as a Function of Film Thickness
due to Confinement in fcc (100) A3 B Alloy Thin Films
[J]. 中国物理快报, 2001, 18(11): 1504-1506.