Generalized Synchronization of Phase Differences in Three Lasers
ZHU Shi-Qun, LUO Xiao-Qin, FANG Jian-Xing
Department of Physics, College of Sciences, Suzhou University,
Suzhou 215006
Generalized Synchronization of Phase Differences in Three Lasers
ZHU Shi-Qun;LUO Xiao-Qin;FANG Jian-Xing
Department of Physics, College of Sciences, Suzhou University,
Suzhou 215006
关键词 :
05.45.Xt ,
05.45.Pq ,
42.50.Ar
Abstract : A linear array of three identical lasers that are coupled mutually in space is investigated theoretically by integration of the laser equations. It is shown that the generalized synchronization of phase differences in the laser fields appears with intermediate coupling when the laser intensities are totally chaotic and chaotically synchronized. Both intensities and phase differences are totally chaotic at smaller coupling constants. The lasers are also changed from coherent light to incoherent one when the couplings between lasers are decreased.
Key words :
05.45.Xt
05.45.Pq
42.50.Ar
出版日期: 2001-06-01
引用本文:
ZHU Shi-Qun;LUO Xiao-Qin;FANG Jian-Xing. Generalized Synchronization of Phase Differences in Three Lasers[J]. 中国物理快报, 2001, 18(6): 727-730.
ZHU Shi-Qun, LUO Xiao-Qin, FANG Jian-Xing. Generalized Synchronization of Phase Differences in Three Lasers. Chin. Phys. Lett., 2001, 18(6): 727-730.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2001/V18/I6/727
[1]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[2]
ZHOU Lu-Qun;OUYANG Qi. Phase Propagations in a Coupled Oscillator--Excitor System of FitzHugh--Nagumo Models [J]. 中国物理快报, 2006, 23(7): 1709-1712.
[3]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[4]
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems [J]. 中国物理快报, 2006, 23(6): 1414-1417.
[5]
MA Jing;ZHANG Guang-Yu;TAN Li-Ying. Theoretical Study of Quantum Bit Rate in Free-Space Quantum Cryptography [J]. 中国物理快报, 2006, 23(6): 1379-1382.
[6]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[7]
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping. Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control [J]. 中国物理快报, 2006, 23(6): 1406-1409.
[8]
WU Li-Yan;LIU Zong-Hua. Enhancement of Information Transmission by Array Induced Stochastic Resonance in the Processes of Amplitude and Frequency Modulations [J]. 中国物理快报, 2006, 23(5): 1110-1113.
[9]
LIU Zeng-Rong;LUO Ji-Gui. Realization of Complete Synchronization between Different Systems by Using Structure Adaptation [J]. 中国物理快报, 2006, 23(5): 1118-1121.
[10]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.
[11]
AO Bin;MA Xiao-Juan;LI Yun-Yun;ZHENG Zhi-Gang. Non-Local Coupling and Partial Synchronization in Chaotic Systems [J]. 中国物理快报, 2006, 23(4): 786-789.
[12]
QIAN Xiao-Lan;LIU Wei-Qing;YANG Jun-Zhong. Transition to Antiphase Synchronization [J]. 中国物理快报, 2006, 23(4): 790-973.
[13]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[14]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[15]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.