Critical Behaviour of the Gaussian Model on Sierpinski Carpets
LIN Zhen-Quan1 , KONG Xiang-Mu2
1 Department of Physics, Wenzhou Normal College, Wenzhou 325027
2 Department of Physics, Qufu Normal University, Qufu 273165
Critical Behaviour of the Gaussian Model on Sierpinski Carpets
LIN Zhen-Quan1 ;KONG Xiang-Mu2
1 Department of Physics, Wenzhou Normal College, Wenzhou 325027
2 Department of Physics, Qufu Normal University, Qufu 273165
关键词 :
05.50.+q ,
64.60.Ak ,
75.10.Hk
Abstract : The Gaussian model on Sierpinski carpets with two types of nearest neighbour interactions K and Kw and two corresponding types of the Gaussian. distribution constants b and bw is constructed by generalizing that on translationally invariant square lattice. The critical behaviours are studied by the renormalization-group approach and spin rescaling method. They are found to be quite different from that on translationally invariant square lattice. There are two critical points at (K* = b,K* w = 0) and (K* = 0,K* w = bw ), and the correlation length critical exponents are calculated.
Key words :
05.50.+q
64.60.Ak
75.10.Hk
出版日期: 2001-07-01
引用本文:
LIN Zhen-Quan;KONG Xiang-Mu. Critical Behaviour of the Gaussian Model on Sierpinski Carpets[J]. 中国物理快报, 2001, 18(7): 882-884.
LIN Zhen-Quan, KONG Xiang-Mu. Critical Behaviour of the Gaussian Model on Sierpinski Carpets. Chin. Phys. Lett., 2001, 18(7): 882-884.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2001/V18/I7/882
[1]
LIU Hui-Ping;SUN Yun-Zhou;YI Lin. Heat Conductivity in a Two-Dimensional Finite-Size Spin System with Dzyaloshinskii--Moriya Interactions [J]. 中国物理快报, 2006, 23(7): 1713-1715.
[2]
CAO Heng;YUAN Song-Liu;SHANG Jing-Lin;JIANG Xiu-Lin;LI Pai;WANG Yong-Qiang;LIU Li. Monte Carlo Study of Griffiths Phase in Randomly Site Diluted Ising Magnetic System [J]. 中国物理快报, 2006, 23(5): 1176-1179.
[3]
WU Zhi-Xi;XU Xin-Jian;WANG Ying-Hai. Prisoner’s Dilemma Game with Heterogeneous Influential Effect on Regular Small-World Networks [J]. 中国物理快报, 2006, 23(3): 531-534.
[4]
LIU Hui-Ping;SUN Yun-Zhou;YI Lin. New Monte Carlo Simulations to a Generalized XY Model [J]. 中国物理快报, 2006, 23(2): 316-319.
[5]
KE San-Min;YUE Rui-Hong. Exact Solution of the One-Dimensional N-Component Bariev Model with a Hard-Core Repulsion under Open Boundary Conditions [J]. 中国物理快报, 2006, 23(2): 301-304.
[6]
WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. 中国物理快报, 2006, 23(2): 305-308.
[7]
SHI Qing-Fan;SUN Gang;HOU Mei-Ying;LU Kun-Quan. Segregation in Vertically Vibrated Binary Granular Mixtures with Same Size [J]. 中国物理快报, 2006, 23(11): 3080-3083.
[8]
B. Kutlu;M. Civi. Critical Finite Size Scaling Relation of the Order-Parameter Probability Distribution for the Three-Dimensional Ising Model on the Creutz Cellular Automaton [J]. 中国物理快报, 2006, 23(10): 2670-2673.
[9]
WANG Lin-Cheng;CUI Hai-Tao;YI Xue-Xi. Decoherence Induced by Spin Chain Environment [J]. 中国物理快报, 2006, 23(10): 2648-2651.
[10]
YUAN Qing-Xin;DING Guo-Hui. Numerical Determination of the Critical Value for the (1+1)-Dimensional Sine-Gordon Model [J]. 中国物理快报, 2006, 23(1): 39-41.
[11]
JIANG Pin-Qun;WANG Bing-Hong;ZHOU Tao;JIN Ying-Di;FU Zhong-Qian;ZHOU Pei-Ling;LUO Xiao-Shu. Networks Emerging from the Competition of Pullulation and Decrepitude [J]. 中国物理快报, 2005, 22(5): 1285-1288.
[12]
LI Guang-Liang. Exact Solution for the Osp(1|2n) Vertex Model under Open Boundary Conditions [J]. 中国物理快报, 2005, 22(4): 833-835.
[13]
WANG Xiao-Hong. Transition for Optimal Paths in Bimodal Directed Polymers [J]. 中国物理快报, 2005, 22(12): 3144-3146.
[14]
LIU Qin-Yong;TIAN Guang-Shan;YAN Xin-Zhong. Antiferromagnetic Phase Transition in the Quasi-Two-Dimensional Hubbard Model at Half Filling [J]. 中国物理快报, 2004, 21(5): 937-940.
[15]
LI Zai-Dong;LI Lu;LIANG Jiu-Qing. Soliton Collision in a Ferromagnetic Spin Chain Driven by a Magnetic Field [J]. 中国物理快报, 2004, 21(3): 443-446.