Quintic Nonlinearity Induced Solitary Waves in Plasma Physics
LIU Hong1,2,3 , HE Xian-Tu2 , LOU Sen-Yue1
1 Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
2 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088
3 Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088
Quintic Nonlinearity Induced Solitary Waves in Plasma Physics
LIU Hong1,2,3 ;HE Xian-Tu2 ;LOU Sen-Yue1
1 Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
2 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088
3 Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088
关键词 :
52.35.Sb ,
05.45.Jn ,
02.30.Ik
Abstract : The quintic nonlinearity is important in the study of the nonlinear interaction between Langmuir waves and electrons in plasma. Using the pseudoenergy approach, five types of solitary wave solutions are obtained explicitly. Only one of these is the modification of the soliton of the cubic nonlinear Schrödinger equation and can be treated perturbatively. However, other four types of solitary wave solutions are all induced by the quintic nonlinearity and cannot be treated perturbatively from the solutions of the cubic nonlinear Schrödinger equation.
Key words :
52.35.Sb
05.45.Jn
02.30.Ik
出版日期: 2002-01-01
引用本文:
LIU Hong;;HE Xian-Tu;LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics
[J]. 中国物理快报, 2002, 19(1): 87-90.
LIU Hong, , HE Xian-Tu, LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics
. Chin. Phys. Lett., 2002, 19(1): 87-90.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2002/V19/I1/87
[1]
HU Heng-Chun;ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation [J]. 中国物理快报, 2007, 24(1): 1-4.
[2]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[3]
ZHANG Da-Jun. Grammian Solutions to a Non-Isospectral Kadomtsev--Petviashvili Equation [J]. 中国物理快报, 2006, 23(9): 2349-2351.
[4]
YANG Lei;WU De-Jin. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas [J]. 中国物理快报, 2006, 23(8): 2155-2157.
[5]
DENG Shu-Fang. Exact Solutions for a Nonisospectral and Variable-Coefficient Kadomtsev--Petviashvili Equation [J]. 中国物理快报, 2006, 23(7): 1662-1665.
[6]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[7]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[8]
TANG Xiao-Yan;HUANG Fei;;LOU Sen-Yue;. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle [J]. 中国物理快报, 2006, 23(4): 887-890.
[9]
WANG Yun-Liang;ZHOU Zhong-Xiang;JIANG Xiang-Qian;YUAN Cheng-Xun;WANG Hai-Feng;ZHANG Hai-Feng;HOU Chun-Feng;JIANG Yong-Yuan;SUN Xiu-Dong;QIN Ru-Hu. Relativistic Electromagnetic Solitary Wave in a Cylindrical Magnetized Plasma [J]. 中国物理快报, 2006, 23(3): 664-667.
[10]
LOU Sen-Yue;LI Yi-Shen;. Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation [J]. 中国物理快报, 2006, 23(10): 2633-2636.
[11]
HUANG Ling. Rational Solutions in a Coupled Burgers System [J]. 中国物理快报, 2006, 23(1): 4-6.
[12]
M. Siddiq;M. Hassan. From Bäcklund Transformation to a Linear System of Sine-Gordon Theory in Superspace [J]. 中国物理快报, 2005, 22(7): 1567-1569.
[13]
ZHANG Shun-Li;LOU Sen-Yue;QU Chang-Zheng. Functional Variable Separation for Generalized (1+2)-Dimensional Nonlinear Diffusion Equations [J]. 中国物理快报, 2005, 22(5): 1029-1032.
[14]
U. Saleem;M. Siddiq;M. Hassan. On Noncommutative Sinh--Gordon Equation [J]. 中国物理快报, 2005, 22(5): 1076-1078.
[15]
MA Hong-Cai. A Simple Method to Generate Lie Point Symmetry Groups of the (3+1)-Dimensional Jimbo--Miwa Equation [J]. 中国物理快报, 2005, 22(3): 554-557.