Phase-Locking in Coupled Chaotic Oscillators
MA Wen-Qi1 , ZHAN Meng2 , HE Dai-Hai2 , WANG Xin-Gang2 , HU Gang2
1 Department of Physics, Beihua University, Jilin 132011
2 Department of Physics, Beijing Normal University, Beijing 100875
Phase-Locking in Coupled Chaotic Oscillators
MA Wen-Qi1 ;ZHAN Meng2 ;HE Dai-Hai2 ;WANG Xin-Gang2 ;HU Gang2
1 Department of Physics, Beihua University, Jilin 132011
2 Department of Physics, Beijing Normal University, Beijing 100875
关键词 :
05.45.Xt ,
05.45.Jn
Abstract :The transition from the phase-unlocking state to phase-locking state is found at the desynchronization of synchronous chaos of coupled oscillators. In the phase-locking case, the motions of all oscillators are chaotic and desynchronous, however spatial ordering is identified in their phase distribution.
Key words :
05.45.Xt
05.45.Jn
出版日期: 2002-02-01
:
05.45.Xt
(Synchronization; coupled oscillators)
05.45.Jn
(High-dimensional chaos)
引用本文:
MA Wen-Qi;ZHAN Meng;HE Dai-Hai;WANG Xin-Gang;HU Gang. Phase-Locking in Coupled Chaotic Oscillators[J]. 中国物理快报, 2002, 19(2): 174-176.
MA Wen-Qi, ZHAN Meng, HE Dai-Hai, WANG Xin-Gang, HU Gang. Phase-Locking in Coupled Chaotic Oscillators. Chin. Phys. Lett., 2002, 19(2): 174-176.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2002/V19/I2/174
[1]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[2]
ZHOU Lu-Qun;OUYANG Qi. Phase Propagations in a Coupled Oscillator--Excitor System of FitzHugh--Nagumo Models [J]. 中国物理快报, 2006, 23(7): 1709-1712.
[3]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[4]
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems [J]. 中国物理快报, 2006, 23(6): 1414-1417.
[5]
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping. Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control [J]. 中国物理快报, 2006, 23(6): 1406-1409.
[6]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[7]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[8]
WU Li-Yan;LIU Zong-Hua. Enhancement of Information Transmission by Array Induced Stochastic Resonance in the Processes of Amplitude and Frequency Modulations [J]. 中国物理快报, 2006, 23(5): 1110-1113.
[9]
LIU Zeng-Rong;LUO Ji-Gui. Realization of Complete Synchronization between Different Systems by Using Structure Adaptation [J]. 中国物理快报, 2006, 23(5): 1118-1121.
[10]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.
[11]
AO Bin;MA Xiao-Juan;LI Yun-Yun;ZHENG Zhi-Gang. Non-Local Coupling and Partial Synchronization in Chaotic Systems [J]. 中国物理快报, 2006, 23(4): 786-789.
[12]
QIAN Xiao-Lan;LIU Wei-Qing;YANG Jun-Zhong. Transition to Antiphase Synchronization [J]. 中国物理快报, 2006, 23(4): 790-973.
[13]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[14]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[15]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.