Strain Effects on Electronic Properties of Boron Nitride Nanoribbons
LI Jin, SUN Li-Zhong, ZHONG Jian-Xin
Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105 Department of Physics, Xiangtan University, Xiangtan 411105
Strain Effects on Electronic Properties of Boron Nitride Nanoribbons
LI Jin, SUN Li-Zhong, ZHONG Jian-Xin
Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105 Department of Physics, Xiangtan University, Xiangtan 411105
We investigate the strain effects on the electronic properties of boron nitride nanoribbons (BNNRs) by using first-principles calculations. The results show that the energy gap of BNNRs with both armchair edges (A-BNNRs) and zigzag edges (Z-BNNRs) decreases as the strain increases. As strain increases, the energy gaps of Z-BNNRs decrease rapidly as the width increases and reduce significantly to small values, which makes Z-BNNRs change from wide-gap to narrow-gap semiconductors.
We investigate the strain effects on the electronic properties of boron nitride nanoribbons (BNNRs) by using first-principles calculations. The results show that the energy gap of BNNRs with both armchair edges (A-BNNRs) and zigzag edges (Z-BNNRs) decreases as the strain increases. As strain increases, the energy gaps of Z-BNNRs decrease rapidly as the width increases and reduce significantly to small values, which makes Z-BNNRs change from wide-gap to narrow-gap semiconductors.
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 [2] Tang C M, Zhu W H and Deng K M 2009 Chin. Phys. Lett. 26 096101 [3] Yu L M, Shi G S, Wang Z G, Fu J G and Lu Z P 2009 Chin. Phys. Lett. 26 086804 [4] Iijima S and Ichibashi T 1993 Nature 363 603 [5] Xiao Y, Yan X H and Ding J W 2007 Chin. Phys. Lett. 24 3506 [6] Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X and Du Y W 2009 Chin. Phys. Lett. 26 116103 [7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [8] Huang Q S, Guo L W, Wang W J, Wang G, Wang W Y, Jia Y U, Lin J J, Li K and Chen X L 2010 Chin. Phys. Lett. 27 046803 [9] Lu H Y and Wang Q H 2008 Chin. Phys. Lett. 25 3746 [10] Chen Y P, Xie Y E, Sun L Z and Zhong J X 2008 Appl. Phys. Lett. 93 092104 [11] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711 [12] Han M, Zhang Y and Zheng H B 2010 Chin. Phys. Lett. 27 037302 [13] Peng X X, Liao W H and Zhou G H 2008 Chin. Phys. Lett. 25 3436 [14] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451 [15] Li J, Gui G and Zhong J X 2008 J. Appl. Phys. 104 094311 [16] Arnaud B, Lebegue S, Rabiller P and Alouani M 2006 Phys. Rev. Lett. 96 026402 [17] Blase X, Rubio A, Louie S G and Cohen M L 1995 Phys. Rev. B 51 6868 [18] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [19] Chen Z, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228 [20] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229 [21] Nakamura J, Nitta T and Natori A 2005 Phys. Rev. B 72 205429 [22] Du A J, Smith Sean C and Lu G Q 2007 Chem. Phys. Lett. 447 181 [23] Zhang Z and Guo W 2008 Phys. Rev. B 77 075403 [24] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [25] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [26] Blochl P E 1994 Phys. Rev. B 50 17953 [27] Kresse G and Jouber J 1999 Phys. Rev. B 59 1758 [28] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [29] Park C H and Louie S T 2008 Nano Lett. 8 2200 [30] Topsakal M and Circci S 2010 Phys. Rev. B 81 024107 [31] Wang X R, Li X L, Zhang Li, Yoon Y K, Weber P K, Wang H L, Guo J and Dai H J 2009 Science 324 768 [32] Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748