Polarization-Independent Guided-Mode Resonance Filters under Oblique Incidence
HU Xu-Hui1, GONG Ke1, SUN Tian-Yu2, WU Dong-Min2
1College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 2i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125
Polarization-Independent Guided-Mode Resonance Filters under Oblique Incidence
HU Xu-Hui1, GONG Ke1, SUN Tian-Yu2, WU Dong-Min2
1College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 2i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125
We present the dispersion relation of guided-mode resonances in planar periodic waveguides, both for s-polarized (TE mode) and p-polarized (TM mode) incident waves. For a fixed homogeneous planar waveguide, dispersion curves of the TE eigenmode cannot cross that of the TM eigenmode at all. That is to say, at a certain wavelength, TE and TM modes cannot be excited with the same propagation constant. Due to Bragg reflection in the planar periodic waveguide, dispersion curves of the TE leaky mode may intersect with that of the TM leaky mode in the first Brillouin zone. We employ these intersections to achieve polarization-independent guided-mode resonance filters.
We present the dispersion relation of guided-mode resonances in planar periodic waveguides, both for s-polarized (TE mode) and p-polarized (TM mode) incident waves. For a fixed homogeneous planar waveguide, dispersion curves of the TE eigenmode cannot cross that of the TM eigenmode at all. That is to say, at a certain wavelength, TE and TM modes cannot be excited with the same propagation constant. Due to Bragg reflection in the planar periodic waveguide, dispersion curves of the TE leaky mode may intersect with that of the TM leaky mode in the first Brillouin zone. We employ these intersections to achieve polarization-independent guided-mode resonance filters.
[1]Wood R W 1902 Phil. Mag. 4 396 [2] Rosenblatt D, Sharon A and Friesem A A 1997 IEEE J. Quantum Electron. 33 2038 [3] Wang S S, Magnusson R, Bagby J S and Moharam M G 1990 J. Opt. Soc. Am. A 7 1470 [4] Ding Y and Magnusson R 2004 Opt. Express 12 1885 [5] Ding Y and Magnusson R 2004 Opt. Express 12 5661 [6] Sang T, Wang Z S, Wang L, Wu Y G and Chen L Y 2005 J. Opt. A: Pure Appl. Opt. 18 62 [7] Wang Z S, Sang T, Wang L, Wu Y G, Zhu J T and Chen L Y 2006 Appl. Phys. Lett. 88 251115 [8] Ding Y and Magnusson R 2007 Opt. Express 15 680 [9] Nilsen-Hofseth S and Romero-Rochin V 2001 Phys. Rev. E 64 036614 [10] Vincent P and Neviere M 1979 Appl. Phys. 20 345 [11] Brundrett D L, Glytsis E N, Gaylord T K and Bendickson J M 2000 J. Opt. Soc. Am. A 17 1221 [12] Fehembach A L, Talneau A, Boyko O, Lemarchand F and Sentenac A 2007 Opt. Lett. 32 2269 [13] Boyko O, Lemarchand F, Talneau A, Fehembach A L and Sentenac A 2009 J. Opt. Soc. Am. A 26 676 [14] Jaggard D L and Elachi C 1976 J. Opt. Soc. Am. 66 674 [15] Andreani L C and Agio M 2006 Phys. Rev. B 73 235114 [16] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068 [17] Sun T Y, Ma J Y, Wang J P, Jin Y X, He H B, Shao J D and Fan Z X 2008 J. Opt. A: Pure Appl. Opt. 10 125003 [18] Sun T Y, Wang J P, Ma J Y, Jin Y X, He H B, Shao J D and Fan Z X 2009 Opt. Commun. 282 451 [19] Li L 1993 J. Opt. Soc. Am. A 10 2581