Adiabatic Passage Based on the Calcium Active Optical Clock
XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao
Institute of Quantum Electronics, and State Key Laboratory of Advanced Optical Communication System & Network, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
Adiabatic Passage Based on the Calcium Active Optical Clock
XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao
Institute of Quantum Electronics, and State Key Laboratory of Advanced Optical Communication System & Network, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
We propose a new application of the optical adiabatic passage effect for the excitation of a thermal atomic beam, which will be used in the calcium active optical clock to produce population inversion. A comparison between the optical adiabatic passage effect and the Rabi π pulse is investigated, 99% of the calcium atoms in the atomic beam that has a wide velocity distribution will be excited to the upper state for population inversion using the adiabatic passage, while 76% at most will be excited to the excited state using the π pulse with suitable parameters.
We propose a new application of the optical adiabatic passage effect for the excitation of a thermal atomic beam, which will be used in the calcium active optical clock to produce population inversion. A comparison between the optical adiabatic passage effect and the Rabi π pulse is investigated, 99% of the calcium atoms in the atomic beam that has a wide velocity distribution will be excited to the upper state for population inversion using the adiabatic passage, while 76% at most will be excited to the excited state using the π pulse with suitable parameters.
(Coherent control of atomic interactions with photons)
引用本文:
XIE Xiao-Peng;ZHUANG Wei;CHEN Jing-Biao. Adiabatic Passage Based on the Calcium Active Optical Clock[J]. 中国物理快报, 2010, 27(7): 74202-074202.
XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao. Adiabatic Passage Based on the Calcium Active Optical Clock. Chin. Phys. Lett., 2010, 27(7): 74202-074202.
[1] Shore B W et al 1992 Phys. Rev. A 45 5297 [2] Abragam A 1961 The Principle of Nuclear Magnetism (Oxford: Clarendon) [3] Treacy E B 1968 Phys. Lett. A 27 421 Treacy E B and DeMaria A J 1969 Phys. Lett. A 29 369 [4] Loy M T 1974 Phys. Rev. Lett. 32 814 [5] Hulet R G and Kleppner D 1983 Phys. Rev. Lett. 51 1430 [6] Gaubatz G et al 1990 J. Chem. Phys. 92 5363 Shore B W, Bergmann K, and Oreg J 1992 Z. Phys. D 23 33 [7] Broers B, van Linden van den heuvell H B and Noordan L D 1992 Phys. Rev. Lett. 69 2062 [8] Goldner L S et al 1994 Phys. Rev. Lett. 72 977 [9] Lawall J and Prentiss M 1994 Phys. Rev. Lett. 72 993 [10] Esslinger T et 1986 Phys. Rev. Lett. 76 3423 [11] Peik E et al 1997 Phys. Rev. A 55 2989 [12] Chen J B 2009 Chin. Sci. Bull. 54 348 [13] Kroon J P C et al 1985 Phys. Rev. A 31 3724 [14] Ekstrom R and Kurtsiefer et al 1996 Opt. Commun. 123 505 [15] Harold J.Metcalf and Peter van der Straten 1999 Laser Cooling and Trapping (New York: Springer) p 11 [16] Huang K K et al 2006 Chin. Phys. Lett. 23 3198 [17] Wichman B, Liedenbaum C and Reuss J 1990 Appl. Phys. B 51 358