Employing the two-state model and the time-dependent wave packet method, the influence of femtosecond laser wavelength on the evolution of the double-minimum electronic excited state wave packet is numerically investigated. For different laser wavelengths, evolutions of the double-minimum electronic excited state wave packet with time and internuclear distance are different. One can control the evolution of the wave packet by varying the laser wavelength appropriately, which will benefit the light manipulation of atomic and molecular processes. Furthermore, study of the dynamics of the NaRb molecule may yield clues to creating an ultracold molecule.
Employing the two-state model and the time-dependent wave packet method, the influence of femtosecond laser wavelength on the evolution of the double-minimum electronic excited state wave packet is numerically investigated. For different laser wavelengths, evolutions of the double-minimum electronic excited state wave packet with time and internuclear distance are different. One can control the evolution of the wave packet by varying the laser wavelength appropriately, which will benefit the light manipulation of atomic and molecular processes. Furthermore, study of the dynamics of the NaRb molecule may yield clues to creating an ultracold molecule.
(Quantum description of interaction of light and matter; related experiments)
引用本文:
MA Ning;WANG Mei-Shan;XIONG De-Lin;YANG Chuan-Lu;MA Xiao-Guang;WANG De-Hua. Theoretical Study of the Influence of Femtosecond Laser Wavelength on the Evolution of a Double-Minimum Electronic Excited State Wave Packet for NaRb[J]. 中国物理快报, 2010, 27(7): 73301-073301.
MA Ning, WANG Mei-Shan, XIONG De-Lin, YANG Chuan-Lu, MA Xiao-Guang, WANG De-Hua. Theoretical Study of the Influence of Femtosecond Laser Wavelength on the Evolution of a Double-Minimum Electronic Excited State Wave Packet for NaRb. Chin. Phys. Lett., 2010, 27(7): 73301-073301.
[1] Wunderlich C et al 1997 Phys. Rev.Lett. 78 2333 [2] Walker B C et al 1999 Opt. Exp. 5 196 [3] Garraway B M and Suominen K A 1998 Phys. Rev. Lett. 80 932 [4] Pukhov A 2003 Rep. Prog. Phys. 66 47 [5] Hu J et al 2006 Phys. Rev. A 74 063417 [6] Lu R F et al 2008 Phys. Rev. E 77 066701 [7] Li X et al 2008 Chin. Phys. Lett. 25 528 [8] Zavriyev A et al 1990 Phys. Rev. A 42 5500 [9] Stapelfeldt H et al 1997 Phys. Rev.Lett. 79 2787 [10] Magnier S et al 1999 Phys. Rev. Lett. 83 2159 [11] Meier C and Engel V 1994 J. Chem. Phys. 101 2673 [12] Assion A et al 1998 Eur. Phys. J. D 4 145 [13] Yu J et al 2006 Chin. Phys. 15 1996 [14] Korek M et al 2000 Chem. Phys. 256 1 [15] Docenko Oet al 2004 Phys. Rev. A 69 042503 [16] Kortyka P, Jastrzebski W and Kowalczyk P 2005 Chem. Phys. Lett. 404 323 [17] Ma N et al 2010 Chin. Phys. B 19 023301 [18] Feit M D et al 1982 J. Comput. Phys. 47 412 [19] Chu T S et al 2006 Int. Rev. Phys. Chem. 25 201 [20] Xie T X et al 2003 Phys. Chem. Chem. Phys. 5 2034 [21] Hu J et al 2005 Phys. Rev. Lett. 95 123001