Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions
TIAN Jing1, QIU Hai-Bo1, CHEN Yong1,2
1Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 2Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Eduction, Lanzhou University, Lanzhou 730000
Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions
TIAN Jing1, QIU Hai-Bo1, CHEN Yong1,2
1Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 2Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Eduction, Lanzhou University, Lanzhou 730000
We investigate the measure synchronization (MS) in two coupled bosonic Josephson junctions. By tuning up the coupling between the two dynamical systems, in addition to the normal MS, a nonlocal MS (NLMS) state is observed. Furthermore, with the dynamic stability analysis, we present the exact analytical solution of the transition point to NLMS.
We investigate the measure synchronization (MS) in two coupled bosonic Josephson junctions. By tuning up the coupling between the two dynamical systems, in addition to the normal MS, a nonlocal MS (NLMS) state is observed. Furthermore, with the dynamic stability analysis, we present the exact analytical solution of the transition point to NLMS.
[1] Huygenii C 1673 Horoloquim Oscillatorium (Paris: F. Muguet) [2] Fabiny L, Colet P and Roy R 1993 Phys. Rev. A 47 4287 [3] Roy R and Thornburg K S, Jr. 1994 Phys. Rev. Lett. 72 2009 [4] Anishchenko V S et al 1992 Int. J. Bifurcation Chaos Appl. Sci. Eng. 2 633 [5] Heagy J F, Carroll T L and Pecora L M 1994 Phys. Rev. A 50 1874 [6] Schreiber I and Marek M 1982 Physica D 50 258 [7] Han S K, Kurrer C and Kuramoto K 1995 Phys. Rev. Lett. 75 3190 [8] Kocarev L and Parlitz U 1983 Phys. Rev. Lett. 74 5028 [9] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 [10] Fujisaka H and Yamada T 1983 Prog. Theor. Phys. 69 32 [11] Pikovsky A S 1984 Z. Phys. B 55 149 [12] Rulkov N F et al 1995 Phys. Rev. E 51 980 [13] Gao J, Zheng Z G, He D H and Zhang T X 2003 Chin. Phys. Lett. 20 999 [14] Abarbanel H D I et al 1996 Phys. Rev. E 53 4528 [15] Pecora L and Parlitz U 1996 Phys. Rev. Lett. 76 1816 [16] Pyragas K 1996 Phys. Rev. E 54 R4508 [17] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804 [18] Zheng Z G, Hu G and Hu B B 2001 Chin. Phys. Lett. 18 847 [19] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329 [20] Osipov G V, Pikovsky A S, Rosenblum M G and Kurths J 1997 Phys. Rev. E 55 2353 [21] Rosa E, Ott E and Hess M H 1998 Phys. Rev. Lett. 80 1642 [22] Zaks M A, Park E, Rosenblum M G and Kurths J 1999 Phys. Rev. Lett. 82 4228 [23] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193 [24] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507 [25] Taherion S and Lai Y C 1999 Phys. Rev. E 59 R6247 [26] Duane G S 2009 Phys. Rev. E 80 R015202 [27] Hampton A and Zanette H D 1999 Phys. Rev. Lett. 83 2179 [28] Wang X, Zhang M, Lai C-H and Hu G 2003 Phys. Rev. E 67 066215 [29] Vincent U E 2005 New J. Phys. 7 209 [30] Wang X G, Li H, Hu K and Hu G 2002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 1143 [31] Ashhab S and Lobo C 2002 Phys. Rev. A 66 013609 [32] Xu X Q, Lu L H and Li Y Q 2008 Phys. Rev. A 78 043609