摘要Rapid growth of Fe--Co single phase is accomplished by rapid solidification in a drop tube. (Fe,Co) grains are refined with the decrease of alloy droplet diameters. Energy dispersive spectroscopy analysis indicates that icrosegregation in (Fe,Co) single phase becomes lower with the reduction of droplet diameters. The experimental results with theoretical calculation reveal that the microsegregation is efficiently suppressed with the increase of undercooling. The free energies of intrinsic segregation for Fe-30wt.%Co, Fe-40wt.%Co and Fe-50wt.%Co alloys are -47.17, -27.57 and -6.57kJ/mol, respectively. The dependence of free energy of segregation on composition and undercooling has been deduced.
Abstract:Rapid growth of Fe--Co single phase is accomplished by rapid solidification in a drop tube. (Fe,Co) grains are refined with the decrease of alloy droplet diameters. Energy dispersive spectroscopy analysis indicates that icrosegregation in (Fe,Co) single phase becomes lower with the reduction of droplet diameters. The experimental results with theoretical calculation reveal that the microsegregation is efficiently suppressed with the increase of undercooling. The free energies of intrinsic segregation for Fe-30wt.%Co, Fe-40wt.%Co and Fe-50wt.%Co alloys are -47.17, -27.57 and -6.57kJ/mol, respectively. The dependence of free energy of segregation on composition and undercooling has been deduced.
YAO Wen-Jing;DAI Fu-Ping;WEI Bing-Bo. Solute Distribution within Rapidly Grown Fe--Co Single Phase[J]. 中国物理快报, 2007, 24(2): 508-511.
YAO Wen-Jing, DAI Fu-Ping, WEI Bing-Bo. Solute Distribution within Rapidly Grown Fe--Co Single Phase. Chin. Phys. Lett., 2007, 24(2): 508-511.
[1] Ikeda K, Yamashita Y, Sugiyama N, Taoka N and Takagi S 2006 Appl. Phys. Lett. 88 152115 [2] Pezzi R P, Copel M, Cabral C and Baumvol I J R 2005 Appl.Phys. Lett. 87 162902 [3] Luo J, Gupta V K, Yoon D H and Meyer III H M 2005 Appl. Phys.Lett. 87 231902 [4] Anestiev L and Froyen L 2001 Appl. Phys. Lett. 78 3355 [5] Ponomareva A V, Pourovskii L V, Isaev E I, Vekilov Y Kh, JohanssonB and Abrikosov I A 2003 Phys. Rev. B 68 064409 [6] Ropo M, Kokko K, Vitos L and Koll\'ar J 2005 Phys. Rev.B 71 045411 [7] Weigand H, Sprengel W, R\"ower R, Schaefer H-E, Wejrzanowski T andKelsch M 2004 Appl. Phys. Lett. 84 3370 [8] Rubinovich L and Polak M 2004 Phys. Rev. B 69 155405 [9] Kortright J B, Kim S K and Ohldag H 2000 Phys. Rev. B 61 64 [10] Busch B W, Gustafsson T and Uebing C 1999 Appl. Phys. Lett. 74 3564 [11] Norman A G, Olson J M, Geisz J F, Moutinho H R, Mason A, Al-JassimM M and Vernon S M 1999 Appl. Phys. Lett. 74 1382 [12] Ropo M, Kokko K, Vitos L and Koll\'ar J 2005 Phys. Rev.B 71 045411 [13] Geng W T 2003 Phys. Rev. B 68 233402 [14] Murayama A, Miyamura M and Kondoh S 1994 Appl. Phys. Lett. 65 1186 [15] Pourovskii L V, Ruban A V, Johansson B and Abrikosov I A 2003 Phys. Rev. Lett. 90 026105 [16] Pourovskii L V, Ruban A V, Abrikosov I A, Vekilov Y K andJohansson B 2001 Phys. Rev. B 64 035421 [17] Massalski T B 1992 Binary Alloy Phase Diagram 2nd edn (NewYork: ASM international) p 1187 [18] McLean D 1957 Grain Boundaries in Metals (Oxford: Clarendon) [19] Lee E and Ahn S 1994 Acta Metall. Mater. 42 3231 [20] Yao W J, Wang N and Wei B 2002 J. Mater. Sci. Lett. 21357