摘要It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level Λ atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (CPT). For the V atom, quantum interference and coherent excitation combine to lead to CPT. For the Λ atom, owever, the quantum interference tends to spoil CPT while the coherent excitation induces the effect.
Abstract:It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level Λ atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (CPT). For the V atom, quantum interference and coherent excitation combine to lead to CPT. For the Λ atom, owever, the quantum interference tends to spoil CPT while the coherent excitation induces the effect.
(Coherent control of atomic interactions with photons)
引用本文:
HU Xiang-Ming;WANG Fei. Strong Correlation of Fluorescence Photons without Quantum Interference[J]. 中国物理快报, 2007, 24(2): 421-423.
HU Xiang-Ming, WANG Fei. Strong Correlation of Fluorescence Photons without Quantum Interference. Chin. Phys. Lett., 2007, 24(2): 421-423.
[1] Arimondo E 1996 Prog. Opt. ed Wolf E (Amsterdam:Elsevier) vol 35 p 257 [2] Gao J Y et al, Yang S H, Wang D, Guo X Z, Chen K X, Jiang Y and Zhao B2000 Phys. Rev. A 61 023401 [3] Harris S E 1997 Phys. Today 50(7) 36 Marangos J P 1998 J. Mod. Opt. 45 471 [4] Tu X H et al , Wang J, Jiang K J, He M, Li K, Zhong J Q and Zhan M S2003 Chin. Phys. Lett. 20 1954 Zuo Z C et al , Sun J, Mi X, Yu Z H, Jiang Q, Wu L A and Fu P M2005 Chin. Phys. Lett. 22 1664 Xiao F et al , Guo R M, Chen S, Zhang Y, Li L M, Chen X Z2003 Chin. Phys. Lett. 20 1257 [5] Kocharovskaya O 1992 Phys. Rep. 219 175 Scully M O 1992 Phys. Rep. 219 191 [6] Mandel P 1994 Contemp. Phys. 34 235 Mompart J and Corbalan R 2000 J. Opt. B 2 R7 [7] Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936 Wang H, Goorsky D and Xiao M Phys. Rev. Lett. 87 073601 Wu J H et al, Gao J Y, Xu J H, Silvestril L, Artoni M, Rocca G C La and Bassani F2005 Phys. Rev. Lett. 95 057401 [8] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904 Yang X X, Wu X and Wu Y 2005 Chin. Phys. Lett. 22 2816 [9] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388 Zhang H Z, Tang S H and He J 2002 Phys. Rev. A 65 063802 [10] Hu X M, Shi W X, Xu Q, Guo H J, Li J Y and Li X X 2006 Phys. Lett. A 352 543 Hu X M, Xu Q, Li J Y, Li X X, Shi W X and Zhang X 2006 Opt.Commun. 260 196 [11] Swain S, Zhou P and Fick Z 2000 Phys. Rev. A 61043410 [12] Cardimona D A, Raymer M G and Stroud C R Jr 1982 J. Phys. B 15 55 [13] Javanainen J 1992 Europhys. Lett. 17 407 [14] Fleischhauer M, Keitel C H, Narducci L M, Scully M O, Zhu S Yand Zubairy M S 1992 Opt. Commun. 94 599 [15] Hu X M and Peng J S 2000 J. Phys. B 33 921 [16] Ficek Z and Swain S 2004 Phys. Rev. A 69 023401 [17] Scully M O and Zubairy M S 1997 Quantum Opt.(Cambridge: Cambridge University Press) p 250 [18] Lax M 1968 Phys. Rev. 172 350