摘要We examine the intensity correlation functions of the two fluorescent fields that are emitted from the top and middle states of a doubly driven three-level atom in the cascade configuration. Novel interference effects are shown. (i) Both of the fluorescent fields have anticorrelations which can exist for long times when the applied fields are on the two-photon resonance and far off one-photon resonances. (ii) Both of the fluorescent fields have strong correlations when the applied fields are far off one- and two-photon resonances. In particular, the extremely strong correlation occurs for the photons emitted from the top state. The above phenomena are traced to the multiple interference mechanisms.
Abstract:We examine the intensity correlation functions of the two fluorescent fields that are emitted from the top and middle states of a doubly driven three-level atom in the cascade configuration. Novel interference effects are shown. (i) Both of the fluorescent fields have anticorrelations which can exist for long times when the applied fields are on the two-photon resonance and far off one-photon resonances. (ii) Both of the fluorescent fields have strong correlations when the applied fields are far off one- and two-photon resonances. In particular, the extremely strong correlation occurs for the photons emitted from the top state. The above phenomena are traced to the multiple interference mechanisms.
(Coherent control of atomic interactions with photons)
引用本文:
WANG Fei;HU Xiang-Ming. Two-Time Intensity Correlations and Multiple Interference Mechanisms in a Driven Cascade Atom[J]. 中国物理快报, 2007, 24(2): 432-435.
WANG Fei, HU Xiang-Ming. Two-Time Intensity Correlations and Multiple Interference Mechanisms in a Driven Cascade Atom. Chin. Phys. Lett., 2007, 24(2): 432-435.
[1] Arimondo E 1996 Progress in Optics ed Wolf E (Amsterdam:Elsevier) vol 35 p 257 [2] Harris S E 1997 Phys. Today 50 (7) 36 [3] Marangos J P 1997 J. Mod. Opt. 45 471 [4] Lukin M D and Imamoglu A 2001 Nature 413 273 [5] Lukin M D 2003 Rev. Mod. Phys. 75 457 [6] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod.Phys. 77 633 [7] Kocharovskaya O 1992 Phys. Rep. 219 175 [8] Scully M O 1992 Phys. Rep. 219 191 [9] Mandel P 1994 Contemp. Phys. 34 235 [10] Mompart J and Corbalan R 2000 J. Opt. B 2 R7 [11] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388 Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032 Li L et al %, Wang X, Yang J, Lazarov G, Qi J and Lyyra A M2000 Phys. Rev. Lett. 84 4016 Wang J, Wiseman H M and Ficek Z 2000 Phys. Rev. A 62013818 [12] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995 Wu J H et al %, Li A J, Ding Y, Zhao Y C and Gao J Y2005 Phys. Rev. A 72 023802 [13] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293 [14] Keitel C H 1999 Phys. Rev. Lett. 83 1307 [15] Li F L and Zhu S Y 1999 Phys. Rev. A 59 2330 Yang Y P, Chen H and Zhu S Y 2000 Chin. Phys. Lett. 17 425 Xie S Y et al %, Yang Y P, Cheng H, Zhu S Y and Wu X2000 Chin. Phys. Lett. 17 25 [16] Swain S, Zhou P and Fick Z 2000 Phys. Rev. A 61043410 [17] Cardimona D A et al %, Raymer M G and Stroud C R Jr1982 J. Phys. 15 55 [18] Fleischhauer M et al%, Keitel C H, Narducci L M, Scully M O, Zhu S Y and Zubairy M S1992 Optics Commun. 94 599 [19] Hu X M and Peng J S 2000 J. Phys. B 33 921 [20] Ficek Z and Swain S 2004 Phys. Rev. A 69 023401 [21] Huang H et al %, Zhu S Y, Zubairy M S and Scully M O1996 Phys. Rev. A 53 1834 [22] Lax M 1968 Phys. Rev. 172 350 [23] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer) p 213 [24] Zhu S Y and Scully S Y 1988 Phys. Rev. A 38 5433