摘要We investigate the effects of higher order multipole transitions, in particular electric quadrupole (E2) and E1--E2 interference, on the Coulomb dissociation of 19C within the framework of the first order eikonal approximation. The sensitivity of the total Coulomb breakup cross section and the longitudinal momentum distribution of the core fragment to these effects are checked. The breakup occurs predominately through the dipole transition and the contribution of E2 transition to the total cross section is found to be within the range from 1 to 3% of that of E1. It is further observed that the E1--E2 interference term contributes nothing to the integrated cross section. On the other hand, the longitudinal momentum distribution is observed to be insensitive to the E2 transition while the E1--E2 interference introduces a small asymmetry in its shape.
Abstract:We investigate the effects of higher order multipole transitions, in particular electric quadrupole (E2) and E1--E2 interference, on the Coulomb dissociation of 19C within the framework of the first order eikonal approximation. The sensitivity of the total Coulomb breakup cross section and the longitudinal momentum distribution of the core fragment to these effects are checked. The breakup occurs predominately through the dipole transition and the contribution of E2 transition to the total cross section is found to be within the range from 1 to 3% of that of E1. It is further observed that the E1--E2 interference term contributes nothing to the integrated cross section. On the other hand, the longitudinal momentum distribution is observed to be insensitive to the E2 transition while the E1--E2 interference introduces a small asymmetry in its shape.
[1] Tanihata I et al 1985 Phys. Rev. Lett. 55 2676 Tanihata I et al 1988 Phys. Lett. B 206 592 [2] Kobayashi T et al 1989 Phys. Lett. B 232 51 Sackett D et al 1993 Phys. Rev. C 48 118 [3] Nakamura T et al 1994 Phys. Lett. B 331 296 [4] Baur G, Bertulani C A and Rebel H 1986 Nucl. Phys. A 458 188 [5] Fang D Q et al 2004 Phys. Rev. C 69 034613 [6] Bazin D et al 1995 Phys. Rev. Lett. 74 3569 [7] Bazin D et al 1998 Phys. Rev. C 57 2156 [8] Baumam T et al 1998 Phys. Lett. B 439 256 [9] Nakamura T et al 1999 Phys. Rev. Lett. 83 1112 [10] Marques F M et al 1996 Phys. Lett. B 381 407 [11] Bertulani C A and Baur G 1988 Phys. Rep. 163 299 [12] Bertulani C A and Baur G 1988 Nucl. Phys. A 480 615 [13] Sauvan E et al 2004 Phys. Rev. C. 69 44603 [14] Chatterjee R, Banerjee P and Shyam R 2000 Nucl. Phys. A 675 477 [15] Shyam R, Banerjee P and Baur G 1992 Nucl. Phys. A 540 341 [16] Audi G and Wapstra A H 1993 Nucl. Phys. A 565 1 Audi G, Wapstra A H and Dedicu M 1993 Nucl. Phys. A 565 193
[1]
LI Jia-Xing;LIU Ping-Ping;WANG Jian-Song;HU Zheng-Guo;MAO Rui-Shi;LI Chen;CHEN Ruo-Fu;SUN Zhi-Yu;XU Hu-Shan;XIAO Guo-Qing;GUO Zhong-Yan. Experimental Study on the Exotic Structure of 12N in RIBLL[J]. 中国物理快报, 2010, 27(3): 32501-032501.
YANG Hai-Jun;CHEN Guo-Ming;YANG Min;XIONG Zhao-Hua;LU Liang;LU Yu-Sheng;CHEN He-Sheng;TANG Xiao-Wei;Martin Pohl*;JIN Bing-Nian*
. Single W Boson Production at √s = 189 GeV[J]. 中国物理快报, 2000, 17(4): 258-260.