摘要We develop an approach to homogenize three-dimensional periodic solid--solid elastic composites with cubic lattice at low frequencies, by using plane wave expansion and perturbation theory with respect to the long wavelength limit. Based on the fact that the two shear waves propagating along lattice axis are degenerated, we derive formulae for effective velocities parallel and normal to the lattice axis, from which three independent effective elastic moduli are calculated, respectively. Theoretical results, which take into account the multiple scattering and the structure of the periodic medium, are in good agreement with the previous isotropic theory at high-symmetry directions.
Abstract:We develop an approach to homogenize three-dimensional periodic solid--solid elastic composites with cubic lattice at low frequencies, by using plane wave expansion and perturbation theory with respect to the long wavelength limit. Based on the fact that the two shear waves propagating along lattice axis are degenerated, we derive formulae for effective velocities parallel and normal to the lattice axis, from which three independent effective elastic moduli are calculated, respectively. Theoretical results, which take into account the multiple scattering and the structure of the periodic medium, are in good agreement with the previous isotropic theory at high-symmetry directions.
[1]Sigalas M M et al %and Economou E N1993 Solid State Commun. 86 141 Economou E N et al %and Sigalas M M1994 J. Acoust. Soc. Am. 95 1734 [2] Kushwaha M S et al 1993 Phys. Rev. Lett. 71 2022 [3] Montero de Espinosa F R, Jim\'enez E and Torres M 1998 Phys.Rev. Lett. 80 1208 [4] Tanaka Y and Tamura S I 1998 Phys. Rev. B 58 7958 [5] Liu Z et al 2000 Science 289 1734 [6] Psarobas I E et al %, Stefanou N and Modinos A2000 Phys. Rev. B 62 278 [7] Vasseur J O et al 2001 Phys. Rev. Lett. 86 3012 [8] Zhang S and Cheng J 2003 Phys. Rev. B 68 245101 Chen J J et al %, Zhang K W, Gao J and Cheng J2006 Phys. Rev. B 73 094307 [9] Yang S et al 2004 Phys. Rev. Lett. 93 024301 [10] Kafesaki M et al %, Penciu R S and Economou E N2000 Phys. Rev.Lett. 84 6050 [11] Cervera F et al 2002 Phys. Rev. Lett. 88 023902 [12] Krokhin A A, Arriaga J and Gumen L N 2003 Phys. Rev. Lett. 91 264302 [13] Ni Q and Cheng J 2005 Phys. Rev. B 72 014305 Ni Q and Cheng J 2005 Chin. Phys. Lett. 22 2305 [14] Mei J et al 2006 Phys. Rev. Lett. 96 024301 [15] Torrent D et al 2006 Phys. Rev. Lett. 96 204302 [16] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [17] Foteinopoulou S et al %, Economou E N and Soukoulis C M2003 Phys.Rev. Lett. 90 107402 [18] Hu X and Chan C T 2005 Phys. Rev. Lett. 95 154501 [19] Berryman J G 1980 J. Acoust. Soc. Am. 68 1809 [20] Auld B A 1973 Acoustic Fields and Waves in Solids (New York:Wiley-Interscience) vol I chaps 6 and 7 [21] Brugger K 1965 J. Appl. Phys. 36 759