Theoretical Study of SOA-Based Wavelength Conversion with NRZ and RZ Format at 40Gb/s
DONG Jian-Ji1, ZHANG Xin-Liang1, FU Song-Nian2, SHUM Ping2, HUANG De-Xiu1
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 4300742Network Technology Research Centre, Nanyang Technological University, Singapore 637553
Theoretical Study of SOA-Based Wavelength Conversion with NRZ and RZ Format at 40Gb/s
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 4300742Network Technology Research Centre, Nanyang Technological University, Singapore 637553
摘要We theoretically discuss 40Gb/s semiconductor optical amplifier (SOA)-based wavelength conversion (WC) using a detuning optical bandpass filter based on ultrafast dynamic characteristics of SOA. Both the inverted and non-inverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength when input data signal is in return-to-zero (RZ) format. However, we can obtain format conversion from nonreturn-to-zero (NRZ) to pseudo-return-to-zero (PRZ) and inverted WC when the input signal is in NRZ format.
Abstract:We theoretically discuss 40Gb/s semiconductor optical amplifier (SOA)-based wavelength conversion (WC) using a detuning optical bandpass filter based on ultrafast dynamic characteristics of SOA. Both the inverted and non-inverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength when input data signal is in return-to-zero (RZ) format. However, we can obtain format conversion from nonreturn-to-zero (NRZ) to pseudo-return-to-zero (PRZ) and inverted WC when the input signal is in NRZ format.
DONG Jian-Ji;ZHANG Xin-Liang;FU Song-Nian;SHUM Ping;HUANG De-Xiu. Theoretical Study of SOA-Based Wavelength Conversion with NRZ and RZ Format at 40Gb/s[J]. 中国物理快报, 2007, 24(4): 990-993.
DONG Jian-Ji, ZHANG Xin-Liang, FU Song-Nian, SHUM Ping, HUANG De-Xiu. Theoretical Study of SOA-Based Wavelength Conversion with NRZ and RZ Format at 40Gb/s. Chin. Phys. Lett., 2007, 24(4): 990-993.
[1] Chow K K, Shu C, Mak M W K and Tsang H K 2002 IEEE Photon.Technol. Lett. 14 1445 [2] Xu F, Zhang X L, Liu H R, Liu D M and Huang D X 2006 Chin.Phys. Lett. 23 355 [3] Chen G X, Li W, Huang W P and Jian S S 2005 Chin. Phys. Lett. 22 110 [4] Nakamura S and Tajima K 1997 Appl. Phys. Lett. 70 3498 [5] Nielsen M L, Lavigne B and Dagens B 2003 Electron. Lett. 39 1334 [6] Liu Y, Tangdiongga E, Li Z, deWaardt H and Koonen A M J 2006 OFC/NFOEC paper PDP28 [7] Tangdiongga E, Liu Y, deWaardt H, Khoe G D and Dorren H J S 2006 IEEE Photon. Technol. Lett. 18 908 [8] Li Z, Liu Y, Zhang S, Ju H, de Waardt H, Khoe G D, Dorren H J S andLenstra D 2005 Electron. Lett. 41 1397 [9] Dong J, Fu S, Zhang X, Shum P, Xu J and Huang D 2007 Opt.Commun. 270 238 [10] Dong J, Zhang X, Xu J, Huang D, Fu S, Shum P and Gong Y 2007 OFC/NFOEC (USA March 2007) [11] Agrawal G P and Olsson N A 1989 IEEE J. Quantum Electron. 25 2297 [12] Mecozzi A and Mork J 1997 IEEE J. Select. Top. QuantumElectron. 3 1190 [13] Dong J, Zhang X, Jiang Z and Huang D 2005 Opt. QuantumElectron. 37 1011 [14] Dong J, Zhang X, Xu J, Huang D, Fu S and Shum P 2007 Opt. Exp. (accepted)