摘要Indium nitride thin films are grown on sapphire substrates by metal-organic chemical vapour deposition (MOCVD). By employing three-step layer buffers, the mirror-like layers on two-inch sapphire wafers have been obtained. The structural, optical and electrical characteristics of InN are investigated by x-ray diffraction, scanning electron microscopy, atomic force microscopy, hotoluminescence and infrared optical absorption. The photoluminescence and the absorption studies of the materials reveal a marked energy bandgap structure around 0.70eV at room temperature. The room-temperature Hall mobility and carrier concentration of the film are typically 939cm2/Vs, and 3.9×1018cm-3, respectively.
Abstract:Indium nitride thin films are grown on sapphire substrates by metal-organic chemical vapour deposition (MOCVD). By employing three-step layer buffers, the mirror-like layers on two-inch sapphire wafers have been obtained. The structural, optical and electrical characteristics of InN are investigated by x-ray diffraction, scanning electron microscopy, atomic force microscopy, hotoluminescence and infrared optical absorption. The photoluminescence and the absorption studies of the materials reveal a marked energy bandgap structure around 0.70eV at room temperature. The room-temperature Hall mobility and carrier concentration of the film are typically 939cm2/Vs, and 3.9×1018cm-3, respectively.
XIE Zi-Li;ZHANG Rong;XIU Xiang-Qian;LIU Bin;LI Liang;HAN Ping;GU Shu-Lin;SHI Yi;ZHENG You-Dou. Growth and Characterization of InN Thin Films on Sapphire by MOCVD[J]. 中国物理快报, 2007, 24(4): 1004-1006.
XIE Zi-Li, ZHANG Rong, XIU Xiang-Qian, LIU Bin, LI Liang, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Growth and Characterization of InN Thin Films on Sapphire by MOCVD. Chin. Phys. Lett., 2007, 24(4): 1004-1006.
[1] Yasushi N, Yoshiki S and Tomohiro Y 2003 Jpn. J. Appl.Phys. 42 2549 [2] Yang F H, Hwang J S, Yang Y J, Chen K H and Wang J H 2002 Jpn. J. Appl. Phys. 41 L1321 [3] Higashiwaki M and Toshiaki M 2002 Jpn. J. Appl. Phys. 41L540 [4] Takashi M, Nakao M, Okamoto H, Harima H and Kurimoto E 2003 Jpn. J. Appl. Phys. 42 2288 [5] Tsuchiya T, Ohnishi M, Wakahara A and Yoshida A 2000 J. CrystalGrowth 220 191 [6] Saito Y, Yamaguchi T, Kanazawa H, Kano K, Araki T, Nanishi Y,Teraguchi N and Suzuki A 2002 J. Crystal Growth 237-239 1017 [7] Zhou S Q, Wu M F, Yao S D and Zhang G Y 2005 Chin.Phys. Lett. 22 2700 [8] Chen G D, Zhu Y Z, Yan G J, Yuan J S, Kim K H, Lin J Y and Jiang HX 2005 Chin. Phys. Lett. 22 472 [9] Inushima T, Mamutin V V, Vekshin V A, Ivanov S V, Sakon T, MotokawaM and Ohoya S 2001 J. Crystal Growth 227-228 481 [10] Saito Y, Harima H, Kurimoto E, Yamaguchi T, Teraguchi N, Suzuki A,Araki T and Nanishi Y 2002 Phys. Status Solidi B 234 796 [11] Davydov V Y, Klochikhin A A, Emtsev V V, Ivanov S V, Vekshin V V,Bechstedt F, Furthmuller J, Harima H, Mudryi A V, Hashimoto A, YamamotoA, Aderhold J, Graul J and Haller E E 2002 Phys. Status Solidi B 230 R4 [12] Miura N, Ishii H, Yamada A, Konagai M, Yamauchi Y and Yamamoto A1997 Jpn. J. Appl. Phys. 36 L256 [13] Higashiwaki M and Matsui T 2003 J. Crystal Growth 252 128 [14] Saito Y, Nobuaki T, Akira S, Tsutomu A and Yasushi N 2001 Jpn. J. Appl. Phys. 40 L91 [15] Ashraful G B, Yamamoto A, Hashimoto A and Ito Y 2002 J.Crystal Growth 236 59 [16] Yamamoto A, Imai N, Sugita K and Hashimoto A 2004 J. CrystalGrowth 261 271 [17] Bhuiyan A G, Hashimoto A and Yamamoto A 2003 J. Appl. Phys. 94 2779 [18] Keller S, Benyaacov I, DenBaars S P and Mishra U K 2000 Proceedings of the International Workshop on Semiconductors$($IWN'2000$)$ (Nagoya, Japan, 24--27 September 2000) IPAPConference Series 1 vol. 1 p 343 [19] Maleyre B, Briot O and Ruffenach S 2004 J. Crystal Growth 269 15 [20] Xie Z L, Zhang R, Liu B, Li L, Liu C X, Xiu X Q, Zhao H, Han P, GuS L, Shi Y and Zheng Y D 2007 J. Crystal Growth (in press)