摘要We suggest a general approach for extending quantum key distribution (QKD) protocols possessing discrete rotational symmetry into quantum secret sharing (QSS) schemes among multiparty, under certain conditions. Only local unitary operations are required for this generalization based on the almost mature technologies of QKD. Theoretically, the number of the participating partners can be arbitrary high. As an application of this method, we propose a fault-tolerant QSS protocol based on a fault-tolerant QKD implementation. The 6-state protocol is also discussed.
Abstract:We suggest a general approach for extending quantum key distribution (QKD) protocols possessing discrete rotational symmetry into quantum secret sharing (QSS) schemes among multiparty, under certain conditions. Only local unitary operations are required for this generalization based on the almost mature technologies of QKD. Theoretically, the number of the participating partners can be arbitrary high. As an application of this method, we propose a fault-tolerant QSS protocol based on a fault-tolerant QKD implementation. The 6-state protocol is also discussed.
[1] Schneier B 1996 Applied Cryptography (New York:Wiley) [2] Gisin N et al 2002 Rev. Mod. Phys. 74 145 [3] Zukowski M et al 1998 Acta Phys. Pol. 93 187 [4] Hillery M et al 1999 Phys. Rev. A 59 1829 [5] Cleve R et al 1999 Phys. Rev. Lett. 83 648 [6] Karlsson A et al 1999 Phys. Rev. A 59 162 [7] Tittel W et al 2001 Phys. Rev. A 63 042301 [8]Chen Y A et al 2005 Phys. Rev. Lett. 95 200502 [9] Choi S, Lee S and Chi D P 2004 arXiv: quant-ph/0403172 [10] Nihira H and Stroud C R Jr 2005 Phys. Rev. A 72022337 [11] Bagherinezhad S et al 2003 Phys. Rev. A 67 044302 [12] Cabello A 2002 Phys. Rev. Lett. 89 100402 [13] Xiao L et al 2004 Phys. Rev. A 69 052307 [14] Deng F G et al 2005 Phys. Lett. A 340 43 [15] Guo G P and Guo G C 2003 Phys. Lett. A 310 247 [16] Yan F L and Gao T 2005 Phys. Rev. A 72 012304 [17] Schmid C et al 2005 Phys. Rev. Lett. 95 230505 [18] Kurtsiefer C et al 2002 Nature 419 450 [19] Aspelmeyer M et al 2003 Science 301 621 [20]Peng C Z et al 2005 Phys. Rev. Lett. 94 150501 [21]Liu W T et al 2006 Chin. Phys. Lett. 23 275 [22] Wang X B 2005 Phys. Rev. A 72050304(R) [23]Zhang Q et al 2006 Phys. Rev. A 73 020301(R) [24]Wang X B 2005 Phys. Rev. Lett. 94 230503 [25]Zhao Y et al 2006 Phys. Rev. Lett. 96 070502 [26]Scarani V et al 2004 Phys. Rev. Lett. 92 057901 [27] Bennett C H and Brassard G 1984 Proc. IEEE Internat.Conf. Computers, Systems and Signal Processing (New York: IEEE) p 175 [28] Ekert A K 1991 Phys. Rev. Lett. 67 661 [29] Shirokoff D et al 2006 arXiv:quant-ph/0604198 [30]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85441 [31]Gisin N et al 2005 arXiv:quant-ph/0507063 [32]Liu W T et al 2006 Chin. Phys. Lett. 23 3148 [33]Buzek V et al 1999 Phys. Rev. A 60 R2626 [34]Wang X B 2007 Appl. Phys. Lett. 90 031110