Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics
ZHANG Chun-Yi 1,2, YAO Zhen-Zhi3, ZHU Hong-Wu3, XU Tao3, LI Juan3, MENG Xiang-Hua3, GAO Yi-Tian1
1Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 1000832Meteorology Center of Air Force Command Post, Changchun 1300513School of Science, Beijing University of Posts Telecommunications, Beijing 100876
Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics
1Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 1000832Meteorology Center of Air Force Command Post, Changchun 1300513School of Science, Beijing University of Posts Telecommunications, Beijing 100876
摘要Applicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg--de Vries (vcKdV) model is investigated. The bilinear form and analytic N-soliton-like solution for such a model are derived by the Hirota method and Wronskian technique. Additionally, the bilinear auto-Backlund transformation between (N-1)-soliton-like and N-soliton-like solutions is verified.
Abstract:Applicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg--de Vries (vcKdV) model is investigated. The bilinear form and analytic N-soliton-like solution for such a model are derived by the Hirota method and Wronskian technique. Additionally, the bilinear auto-Backlund transformation between (N-1)-soliton-like and N-soliton-like solutions is verified.
ZHANG Chun-Yi;YAO Zhen-Zhi;ZHU Hong-Wu; XU Tao;LI Juan;MENG Xiang-Hua;GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics[J]. 中国物理快报, 2007, 24(5): 1173-1176.
ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu, XU Tao, LI Juan, MENG Xiang-Hua, GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics. Chin. Phys. Lett., 2007, 24(5): 1173-1176.
[1] Tian B, Wei G M, Zhang C Y, Shan W R and Gao Y T 2006 Phys. Lett. A 356 8 [2] Formaggia L, Nobile F, Quarteroni A and Veneziani A 1999 Comput. Visual Sci. 2 75 Olufsen M 2000 Stud. Health Technol. Inform. 71 79 Quarteroni A, Tuveri M and Veneziani A 2000 Comput. VisualSci. 2 163 Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer) [3] Demiray H 2004 Int. J. Engng. Sci. 42 203 [4] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605 [5] Dai H H and Huo Y 2002 Wave Motion 35 55 [6] Holloway P, Pelinovsky E and Talipova T 1999 J. Geophys.Res. C 104 18333 [7] Grimshaw R H J and Mitsudera H 1993 Stud. Appl. Math. 90 75 [8] Ei G A and Grimshaw R H J 2002 Chaos 12 1015 [9] Frantzeskakis D J, Proukakis N P and Kevrekidis P G 2004 Phys. Rev. A 70 015601 Hirota R 1971 Phys. Rev. Lett. 27 1192 Hirota R 1974 Progr. Theor. Phys. Suppl. 52 1498 Hirota R, Hu X B and Tang X Y 2003 J. Math. Anal. Appl. 288 326 Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 41 2141 [10] Satsuma J 1979 J. Phys. Soc. Jpn. 46 395 Freeman N C, Horrocks G and Wilkinson P 1981 Phys. Lett. A 81 305 Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1 Nimmo J J C and Freeman N C 1983 Phys. Lett. A 95 4 Yao Z Z, Zhang C Y, Zhu H W, Meng X H, Xu T and Tian B No200701-178 Science paper Onlinehttp://www.paper.edu.cn/index.html Zhu H W and Tian B No 200701-216 {\em Science paper Onlinehttp://www.paper.edu.cn/index.html [11] Deng S F 2006 Chin. Phys. Lett. 23 1662 Zhang D J arXiv:nlin.SI/0603008 Zhang D J and Chen D Y 2004 J. Phys. A 37 851 Deng S F 2005 Commun. Theor. Phys. 43 961 [12] Grimshaw R 1979 Proc. R. Soc. London A 368 359 Joshi N 1987 Phys. Lett. A 125 456 [13] Hirota R 1979 J. Phys. Soc. Jpn. 46 1681