Quantum Key Distribution against Trojan Horse Attacks
CAI Qing-Yu1, LV Hua 1,2,3
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Department of Physics, Hubei University of Technology, Wuhan 4300683Graduate University of the Chinese Academy of Sciences, Beijing 100049
Quantum Key Distribution against Trojan Horse Attacks
CAI Qing-Yu1;LV Hua 1,2,3
1State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Department of Physics, Hubei University of Technology, Wuhan 4300683Graduate University of the Chinese Academy of Sciences, Beijing 100049
摘要Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quantum teleportation and entanglement swapping, which is robustly secure against the most general Trojan horse attacks. Our scheme is not an improvement of the communication apparatus, but the improvement of quantum communication protocol itself. We show that our modified schemes may be implemented with current technology.
Abstract:Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quantum teleportation and entanglement swapping, which is robustly secure against the most general Trojan horse attacks. Our scheme is not an improvement of the communication apparatus, but the improvement of quantum communication protocol itself. We show that our modified schemes may be implemented with current technology.
[1] Gisin N et al 2002 Rev. Mod. Phys. 74 145 [2] Bennett C H and Brassard G 1984 Proceedings IEEEInternational Conference on Computers, Systems and Signal Processing(New York: IEEE) p 175 [3] Mayer D 2001 J. Assoc. Comput. Mach. 48 351 [4] Lo H K and Chau H F 1999 Science 283 2050 [5] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [6] Ekert A K 1991 Phys. Rev. Lett. 67 661 [7] Gisin N et al 2006 Phys. Rev. A 73 022320 [8] Huttner B et al 1995 Phys. Rev. A 51 1863 [9] Hwang W Y 2003 Phys. Rev. Lett. 91 057901 [10] Wang X B 2005 Phys. Rev. Lett. 94 230503 [11] Lo H-K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504 [12] Cai Q Y and Tan Y G 2006 Phys. Rev. A 73 032305 [13] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 [14] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301 Degiovanni I P et al 2003 Phys. Rev. A 69 032310 Gao T et al 2005 Chin. Phys. Lett. 22 2473 Wang M Y et al 2005 Chin. Phys. Lett. 22 1053 [15] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601 Deng F G and Long G L 2004 Phys. Rev. A 69 052319 Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501 Xin J and Zhang S 2005 Chin. Phys. 15 1418 [16] Wojcik A 2003 Phys. Rev. Lett. 90 157901 Cai Q Y 2003 Phys. Rev. Lett. 91 109801 [17] Cai Q Y 2006 Phys. Lett. A 351 23 [18] Deng F G et al quant-ph/0508168 [19] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [20] Zukowski M et al 1993 Phys. Rev. Lett. 71 4287 [21] Braunstein S L and Mann A 1995 Phys. Rev. A 51 R1727 [22] Wang X B et al 2007 Appl. Phys. Lett. 90 031110 Zhao Y et al 2006 Phys. Rev. Lett. 96 070502 Peng C Z et al 2007 Phys. Rev. Lett. 98 010505 Rosenberg D et al 2007 Phys. Rev. Lett. 98 010503 Schmitt-Manderbach T et al 2007 Phys. Rev. Lett. 98 010504