摘要In the framework of irreversible thermodynamics, we study the transport properties of hot quark--gluon plasmas. The viscous entropy production at finite chemical potential as well as the shear viscosity to non-equilibrium entropy density ratio is investigated in weakly coupled limit by using kinetic theory. The results show that the chemical potential contributes positively to their ratio compared to the pure temperature case. The ratio exhibits two boundaries in the coupling strength in which a minimum value of 0.42 is found at αs=0.6.
Abstract:In the framework of irreversible thermodynamics, we study the transport properties of hot quark--gluon plasmas. The viscous entropy production at finite chemical potential as well as the shear viscosity to non-equilibrium entropy density ratio is investigated in weakly coupled limit by using kinetic theory. The results show that the chemical potential contributes positively to their ratio compared to the pure temperature case. The ratio exhibits two boundaries in the coupling strength in which a minimum value of 0.42 is found at αs=0.6.
LIU Hui;HOU De-Fu;LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. 中国物理快报, 2007, 24(5): 1191-1194.
LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential. Chin. Phys. Lett., 2007, 24(5): 1191-1194.
[1] Shuryak E V and Zahed I 2004 Phys. Rev. D 70 054507 [2] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30 [3] M\"{uller B 2005 arXiv:nucl-th/0508062 and referencestherein [4] Haensel P, Levenfish K P and Yakovlev D G 2002 Astron.Astophys. 381 1080 [5] Zheng X P, Kang M, Liu X W and Yang S H 2005 Phys. Rev. C 72 025809 [6] De Groot S R 1952 Thermaldynamics of IrriversibleProcesses (Amsterdam: North-Holland) [7] Nakamura A and Sakai S 2005 Phys. Rev. Lett. 94 072305 [8] Arnold P, Dogan C and Moore G D 2006 Phys. Rev. D 74 085021 [9] De Groot S R, van Leeuwen W A and van Weert Ch G 1980 Relativistic Kinetic Theory (Amsterdam: North-Holland) [10] Hosoya R and Kajantie D 1985 Nucl. Phys. B 250 666 [11] Gavin S 1985 Nucl. Phys. A 435 826 [12] Danielewicz P and Gyulassy M 1985 Phys. Rev. D 31 53 [13] von Oertzen D W 1992 Phys. Lett. B 280 103 [14]Baym G, Monien H, Pethick C J and Ravenhall D G 1990 Phys. Rev.Lett. 64 1867 [15]Heiselberg H 1994 Phys. Rev. D 49 4739 [16]Arnold P, Moore G D and Yaffe L G 2000 J. High Energy Phys. 0011 001 [17]Arnold P, Moore G D and Yaffe L G 2003 J. High Energy Phys. 0305 051 [18]Liu H, Hou D F and Li J R 2006 Eur. Phys. J. C 45 459 [19] Blaizot J P, Iancu E and Rebhan A 1999 Phys. Rev. Lett. 83 2906 [20] Hirano T and Gyulassy M 2005 J. High Energy Phys. 0508 086 [21] Policastro G, Son D T and Starinets A O 2001 Phys. Rev.Lett. 87 081601 [22] Buchel A and Liu J T 2004 Phys. Rev. Lett. 93 090602 [23] Kovtun P K, Son D T and Starinets A O 2005 Phys. Rev.Lett. 94 111601 [24] Maeda K, Nasuume M and Okamura T 2006 arXiv:hep-th/0602010 [25] Bjorken J D 1983 Phys. Rev. D 27 140 [26] SART collaboration 2003 Phys. Rev. Lett. 91 052303 [27] Teaney D 2003 Phys. Rev. C 68 034913