Exploration of Pseudospin Symmetry in the Resonant States
ZHANG Shi-Sheng1, SUN Bao-Hua2, ZHOU Shan-Gui 3,4
1Department of Physics, School of Science, Beihang University, Beijing 1000832School of Physics, Peking University, Beijing 1008713Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 1000804Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
Exploration of Pseudospin Symmetry in the Resonant States
ZHANG Shi-Sheng1;SUN Bao-Hua2;ZHOU Shan-Gui 3,4
1Department of Physics, School of Science, Beihang University, Beijing 1000832School of Physics, Peking University, Beijing 1008713Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 1000804Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
摘要Taking 120Sn as an example, we discuss the pseudospin symmetry in the single proton resonant states by examining the energies, widths and the wavefunctions. The information of the single proton resonant states in spherical nuclei are extracted from an analytic continuation in the coupling constant method within the framework of the self-consistent relativistic mean field theory under the relativistic boundary condition. We find small energy splitting in a pair of pseudospin partners in the resonant states. The lower components of the Dirac wavefunctions of a pseudospin doublet agree well in the region where nuclear potential dominates. It is concluded that the pseudospin symmetry is also well conserved for the resonant states in realistic nuclei.
Abstract:Taking 120Sn as an example, we discuss the pseudospin symmetry in the single proton resonant states by examining the energies, widths and the wavefunctions. The information of the single proton resonant states in spherical nuclei are extracted from an analytic continuation in the coupling constant method within the framework of the self-consistent relativistic mean field theory under the relativistic boundary condition. We find small energy splitting in a pair of pseudospin partners in the resonant states. The lower components of the Dirac wavefunctions of a pseudospin doublet agree well in the region where nuclear potential dominates. It is concluded that the pseudospin symmetry is also well conserved for the resonant states in realistic nuclei.
ZHANG Shi-Sheng;SUN Bao-Hua;ZHOU Shan-Gui;. Exploration of Pseudospin Symmetry in the Resonant States[J]. 中国物理快报, 2007, 24(5): 1199-1202.
ZHANG Shi-Sheng, SUN Bao-Hua, ZHOU Shan-Gui,. Exploration of Pseudospin Symmetry in the Resonant States. Chin. Phys. Lett., 2007, 24(5): 1199-1202.
[1] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129 [2] Arima A, Harvey M and Shimizu K 1969 Phys.Lett. B 30 517 [3] Bohr A, Hamamoto I and Mottelson B R 1982 Phys.Scr. 26 267 [4] Dudek J, Nazarewicz W and Szymanski Z et al 1987 Phys. Rev. Lett. 59 1405 [5] Nazarewicz W, Twin P J and Fallon P et al. 1990 Phys. Rev. Lett. 64 1654 [6] Stephens F S, Deleplanque M A and Draper J E et al. 1990 Phys. Rev. Lett. 65 301 Stephens F S, Deleplanque M A and Macchiavelli A O et al 1998 Phys. Rev. C 57 R1565 [7] Zeng J Y, Meng J and Wu C S et al 1991 Phys. Rev. C 44 R1745 [8] Troltenier D, Nazarewicz W and Szymanski Z et al 1994 Nucl. Phys. A 567 591 [9] Stuchbery A E 1999 J. Phys. G 25 611 Stuchbery A E 2002 Nucl. Phys. A 700 83 [10] Blokhin A L, Bahri C and Draayer J P 1995 Phys. Rev.Lett. 74 4149 [11] Bahri C, Draayer J P and Moszkowski S A 1992 Phys. Rev.Lett. 68 2133 [12] Ginocchio J N 1997 Phys. Rev. Lett. 78 436 Ginocchio J N 1999 Phys. Rep. 315 231 [13] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S2006 Prog. Part. Nucl. Phys. 57 470 [14] Meng J, Sugawara-Tanabe K and Yamaji S et al. 1999 Phys.Rev. C 59 154 [15] Ginocchio J N and Leviatan A 2001 Phys. Rev. Lett. 87 072502 [16] Ginocchio J N 2002 Phys. Rev. C 66 064312 [17] Leviatan A and Ginocchio J N 2001 Phys. Lett. B 518 214 [18] Chen T S, L\"u H F and Meng J et al 2003 Chin. Phys.Lett. 20 358 [19] Ginocchio J N 2004 Phys. Rev. C 69 034318 [20] Lisboa R, Malheiro M and de Castro A S et al 2004 Phys.Rev. C 69 024319 [21] Guo J Y, Fang X Z and Xu F X 2002 Phys. Rev. A 66 062105 [22] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90 [23] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602 [24] Guo J Y, Fang X Z and Xu F X 2005 Nucl. Phys. A 757 411 [25] Alberto P, Fiolhais M and Malheiro M 2001 Phys. Rev.Lett. 86 5015 Alberto P, Fiolhais M and Malheiro M 2002 Phys. Rev. C 65 034307 [26] Maglione E, Ferreira L S and Liotta R J 1998 Phys. Rev.Lett. 81 538 [27] Meng J and Ring P 1996 Phys. Rev. Lett. 77 3963 Meng J and Ring P 1998 Phys. Rev. Lett. 80 460 [28] Sandulescu N, Geng L S and Toki H 2003 Phys. Rev. C 68 054323 [29] Cao L G and Ma Z Y 2002 Phys. Rev. C 66 024311 [30] Kukulin V I, Krasnopl'sky V M and Hor\'acek J 1989 Theory of Resonances: Principles and Applications (Dordrecht: Kluwer) [31] Wigner E and Eisenbud L 1947 Phys. Rev. 72 29 [32] Hale G M, Brown R E and Jarmie N 1987 Phys. Rev. Lett. 59 763 [33] Humblet J, Filippone B W and Koonin S E 1991 Phys.Rev. C 44 2530 [34] Taylor J R 1972 Scattering Theory: The QuantumTheory on Nonrelativistic Collisions (New York: Wiley) [35] Hazi A U and Taylor H S 1970 Phys. Rev. A 1 1109 [36] Ho Y K 1983 Phys. Rep. 99 1 [37] Zhang S S, Meng J and Guo J Y 2003 High Energy Phys.Nucl. Phys. 27 1095 (in Chinese) [38] Zhang S S, Guo J Y and Zhang S Q et al 2004 Chin. Phys.Lett. 21 632 [39] Zhang S S 2004 Mod. Phys. Lett. A 19 1537 [40] Zhang S S, Meng J and Zhou S G et al 2004 Phys. Rev. C 70 034308 [41] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [42] Zhang S S, Zhang W, Zhou S G and Meng J 2006 Eur. J. Phys. A (accepted) [43] Boguta J and Bodmer A R 1977 Nucl. Phys. A 292 413 [44] Greiner W 1997 Relativistic Quantum Mechanics---Wave Equation(Berlin: Springer) [45] Meng J 1998 Nucl. Phys. A 635 3 [46] Lalazissis G A, K\"onig J and Ring P 1997 Phys. Rev. C 55 540