Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes
PAN Rui-Qin 1,2, XU Zi-Jian 1,2, ZHU Zhi-Yuan1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 100049
Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes
PAN Rui-Qin 1,2;XU Zi-Jian 1,2;ZHU Zhi-Yuan1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要Dependence of the thermal conductivity on the length of two armchair single-walled carbon nanotubes (SWNTs) is studied by the nonequilibrium molecular dynamics (MD) method with Brenner II potential. The thermal conductivities are calculated for (5, 5) and (7, 7) SWNTs with lengths ranging from 22 to 155nm. The results show that the thermal conductivity of SWNTs is sensitive to the length and it does not converge to a finite value when the tube length increases up to 155nm, however it obeys a power law relation.
Abstract:Dependence of the thermal conductivity on the length of two armchair single-walled carbon nanotubes (SWNTs) is studied by the nonequilibrium molecular dynamics (MD) method with Brenner II potential. The thermal conductivities are calculated for (5, 5) and (7, 7) SWNTs with lengths ranging from 22 to 155nm. The results show that the thermal conductivity of SWNTs is sensitive to the length and it does not converge to a finite value when the tube length increases up to 155nm, however it obeys a power law relation.
[1] Iijima S 1991 Nature 354 56 [2] Che J, Cagin T and Goddard W A III 2000 Nanotechnology 11 65 [3] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613 [4] Hone J, Whitney M, Piskoti C and Zettl A 1999 Phys. Rev.B 59 R2514 [5] Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys.Rev. B 59 R9015 [6] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev.Lett. 87 215502 [7] Vavro J, Llaguno M C, Satishkumar B C, Luzzi D E and Fischer J E2002 Appl. Phys. Lett. 80 1450 [8] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H andShimizu T 2005 Phys. Rev. Lett. 95 065502 [9] Grujicic M, Cao G and Gersten B 2004 Mater. Sci. Eng. B 107 204 [10] Yao Z H, Wang J S, Li B and Liu G R 2005 Phys. Rev. B 71 085417 [11] Osman M A and Srivastava D 2001 Nanotechnology 12 21 [12] Zhang W, Zhu Z Y, Wang F, Wang T T, Sun L T and Wang Z X 2004 Nanotechnology 15 936 [13] Maruyama S 2003 Microscale Thermophys. Eng. 7 41 [14] Kondo N, Yamamoto T and Watanabe K 2006 e-J. Surf. Sci.Nanotech. 4 239 [15] Bi K D, Chen Y F, Yang J K, Wang Y H and Chen M H 2006 Phys.Lett. A 350 150 [16] Shi L 2001 Ph. D. thesis (Berkeley: University of California) [17] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B andSinnott S B 2002 J. Phys.: Condens. Matter 14 783 [18] M\"uller-Plathe F 1997 J. Chem. Phys. 106 6082 [19] Schelling P K, Phillpot S R and Keblinski P 2002 Phys.Rev. B 65 144306 [20] Maiti A, Mahan G D and Pantelides S T 1997 Sol. Stat.Commun. 102 517 Oligschleger C and Schon J C 1999 Phys. Rev. B 59 4125 [21] Zhang G and Li B W 2005 J. Chem. Phys. 123 114714 [22] Maruyama S 2002 Phys. B 323 193 [23] Lepri S 2000 Eur. Phys. J. B 18 441